This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211031 #22 Aug 16 2025 03:29:38 %S A211031 1,16,69,176,375,650,1107,1626,2413,3326,4527,5782,7689,9436,11753, %T A211031 14354,17491,20458,24623,28334,33425,38438,44031,49450,57323,64028, %U A211031 71849,80078,89857,98468,110545,120388,133117,145382,158699,172256 %N A211031 Number of 2 X 2 matrices having all elements in {0,1,...,n} and determinant in the closed interval [-n,n]. %C A211031 For a guide to related sequences, see A210000. %H A211031 David Radcliffe, <a href="/A211031/b211031.txt">Table of n, a(n) for n = 0..10000</a> %t A211031 a = 0; b = n; z1 = 40; %t A211031 t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] %t A211031 c[n_, k_] := c[n, k] = Count[t[n], k] %t A211031 c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, -n, m}] %t A211031 Table[c1[n, n], {n, 0, z1}] (* A211031 *) %o A211031 (Python) %o A211031 import numpy as np %o A211031 def A211031_gen(limit): %o A211031 yield 1 %o A211031 offset = limit + 1 %o A211031 size = offset * offset + 1 %o A211031 # a[offset+k] is the number of solutions to i*j = k with i,j in {0, 1, 2, ..., n} %o A211031 a = np.zeros(size, dtype=np.int64) %o A211031 a[offset] = 1 %o A211031 for n in range(1, offset): %o A211031 a[offset: offset + n*n: n] += 2 %o A211031 a[offset + n*n] += 1 %o A211031 lag = 2*n + 1 %o A211031 c = np.cumsum(a) %o A211031 c = c[lag:] - c[:-lag] %o A211031 a1 = a[n+1: -n] %o A211031 yield int(a1 @ c) %o A211031 print(list(A211031_gen(35))) # _David Radcliffe_, Aug 15 2025 %Y A211031 Cf. A210000, A211032. %K A211031 nonn %O A211031 0,2 %A A211031 _Clark Kimberling_, Mar 30 2012