A211058 Number of 2 X 2 matrices having all terms in {1,...,n} and nonnegative determinant.
1, 11, 48, 144, 337, 691, 1256, 2128, 3385, 5139, 7480, 10584, 14521, 19499, 25664, 33184, 42209, 53027, 65736, 80680, 98009, 117979, 140816, 166936, 196441, 229715, 267056, 308816, 355185, 406755, 463576, 526264, 595081, 670419
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A210000.
Programs
-
Maple
g:= proc(n) local T,a,b,t,i,r; T:= Vector(n^2): for a from 1 to n do T[a^2]:= 1 od: for a from 1 to n-1 do for b from a+1 to n do T[a*b]:= T[a*b]+2 od od; r:= n^2; t:= T[1]*r; for i from 2 to n^2 do r:= r - T[i-1]; t:= t + T[i]*r; od; t end proc: g(1):= 1: map(g, [$1..40]); # Robert Israel, Sep 06 2024
-
Mathematica
a = 1; b = n; z1 = 35; t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, m}] Table[c1[n, n^2], {n, 1, z1}] (* A211058 *)
Comments