cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211072 Sum of numbers with no '0' decimal digits whose sum of digits equals n.

This page as a plain text file.
%I A211072 #42 Jul 06 2021 15:59:35
%S A211072 0,1,13,147,1625,17891,196833,2165227,23817625,261994131,2881935943,
%T A211072 31701296375,348714262017,3835856884757,42194425724149,
%U A211072 464138682802857,5105525508895321,56160780576260645,617768586100819485,6795454444489330049,74749998860563784655
%N A211072 Sum of numbers with no '0' decimal digits whose sum of digits equals n.
%C A211072 Different from A016135.
%H A211072 Alois P. Heinz, <a href="/A211072/b211072.txt">Table of n, a(n) for n = 0..961</a> (terms n = 1..31 from Laurent Desnogues)
%H A211072 Project Euler, <a href="http://projecteuler.net/problem=377">Problem 377: Sum of digits, experience 13</a>
%H A211072 Tadao Takaoku, <a href="http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1644-10.pdf">A two-level algorithm for generating multiset permutations</a>, RIMS Kokyuroku 1644 (2009), pp. 95-109.
%H A211072 <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (11,1,-9,-19,-29,-39,-49,-59,-69,-90,-80,-70,-60,-50,-40,-30,-20,-10).
%F A211072 G.f.: x*(9*x^8 + 8*x^7 + 7*x^6 + 6*x^5 + 5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1)/((x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x - 1)*(10*x^9 + 10*x^8 + 10*x^7 + 10*x^6 + 10*x^5 + 10*x^4 + 10*x^3 + 10*x^2 + 10*x - 1)). - _Yurii Ivanov_, Jul 06 2021
%e A211072 2 and 11 are the only numbers without 0's which have digit sum 2, so a(2) = 2 + 11 = 13.
%p A211072 b:= proc(n) option remember; `if`(n=0, [1, 0], add((p->
%p A211072       [p[1], p[2]*10+p[1]*d])(b(n-d)), d=1..min(n, 9)))
%p A211072     end:
%p A211072 a:= n-> b(n)[2]:
%p A211072 seq(a(n), n=0..23);  # _Alois P. Heinz_, Feb 19 2020
%Y A211072 Cf. A007953, A016135, A052382, A130835, A258800.
%K A211072 nonn,base,easy
%O A211072 0,3
%A A211072 _Laurent Desnogues_ and _Charles R Greathouse IV_, Apr 02 2012
%E A211072 a(0)=0 prepended by _Alois P. Heinz_, Feb 19 2020