This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211097 #29 Mar 30 2023 09:16:19 %S A211097 1,1,2,1,2,2,3,1,2,1,3,2,3,3,4,1,2,1,3,2,2,1,4,2,3,2,4,3,4,4,5,1,2,1, %T A211097 3,1,2,1,4,2,3,1,3,2,2,1,5,2,3,2,4,3,3,2,5,3,4,3,5,4,5,5,6,1,2,1,3,1, %U A211097 2,1,4,2,2,1,3,1,2,1,5,2,3,2,4,3,2,1,4,2,3,2,3,2,2,1,6,2,3,2,4,2,3,2,5,3,4,2,4,3,3,2,6,3,4,3,5,4,4,3,6,4,5 %N A211097 Number of factors in Lyndon factorization of binary vectors of lengths 1, 2, 3, ... %C A211097 Any binary word has a unique factorization as a product of nonincreasing Lyndon words (see Lothaire). Here we look at the Lyndon factorizations of the binary vectors 0,1, 00,01,10,11, 000,001,010,011,100,101,110,111, 0000,... %C A211097 For the largest (or leftmost) factor see A211098, A211099. %C A211097 The smallest (or rightmost) factors are given by A211095 and A211096, offset by 2. %D A211097 M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983. See Theorem 5.1.5, p. 67. %D A211097 G. Melançon, Factorizing infinite words using Maple, MapleTech Journal, vol. 4, no. 1, 1997, pp. 34-42 %H A211097 N. J. A. Sloane, <a href="/A211097/b211097.txt">Table of n, a(n) for n = 1..10000</a> %H A211097 N. J. A. Sloane, <a href="/A211097/a211097.txt">Maple programs for A211097 etc.</a> %e A211097 Here are the Lyndon factorizations of the first few binary vectors: %e A211097 .0. %e A211097 .1. %e A211097 .0.0. %e A211097 .01. %e A211097 .1.0. %e A211097 .1.1. %e A211097 .0.0.0. %e A211097 .001. %e A211097 .01.0. <- this means that the factorization is (01)(0), for example %e A211097 .011. %e A211097 .1.0.0. %e A211097 .1.01. %e A211097 .1.1.0. %e A211097 .1.1.1. %e A211097 .0.0.0.0. %e A211097 ... %t A211097 lynQ[q_]:=Array[Union[{q,RotateRight[q,#]}]=={q,RotateRight[q,#]}&,Length[q]-1,1,And]; %t A211097 lynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[lynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],lynQ[Take[q,#]]&]]]]; %t A211097 Table[Length[lynfac[Rest[IntegerDigits[n,2]]]],{n,2,50}] (* _Gus Wiseman_, Nov 14 2019 *) %Y A211097 A211098 and A211099 give information about the largest (or leftmost) factor. %Y A211097 Cf. A211095, A211096. %Y A211097 Row-lengths of A329325. %Y A211097 The "co" version is A329400. %Y A211097 Retaining the first digit gives A211100. %Y A211097 Binary Lyndon words are counted by A001037 and constructed by A102659. %Y A211097 Numbers whose reversed binary expansion is Lyndon are A328596. %Y A211097 Cf. A059966, A060223, A275692, A329312, A329313, A329314, A329326. %K A211097 nonn %O A211097 1,3 %A A211097 _N. J. A. Sloane_, Apr 01 2012