cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211098 Length of largest (i.e., leftmost) Lyndon word in Lyndon factorization of binary vectors of lengths 1, 2, 3, ...

This page as a plain text file.
%I A211098 #12 Mar 30 2023 09:16:24
%S A211098 1,1,1,2,1,1,1,3,2,3,1,1,1,1,1,4,3,4,2,2,3,4,1,1,1,1,1,1,1,1,1,5,4,5,
%T A211098 3,5,4,5,2,2,2,5,3,3,4,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,5,6,4,6,
%U A211098 5,6,3,3,5,6,4,6,5,6,2,2,2,2,2,2,5,6,3,3,3,3,4,4,5,6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N A211098 Length of largest (i.e., leftmost) Lyndon word in Lyndon factorization of binary vectors of lengths 1, 2, 3, ...
%C A211098 Any binary word has a unique factorization as a product of nonincreasing Lyndon words (see Lothaire). Here we look at the Lyndon factorizations of the binary vectors 0,1, 00,01,10,11, 000,001,010,011,100,101,110,111, 0000,...
%C A211098 See A211097, A211099, A211100 for further information, including Maple code.
%C A211098 The smallest (or rightmost) factors are given by A211095 and A211096, offset by 2.
%D A211098 M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983. See Theorem 5.1.5, p. 67.
%D A211098 G. Melançon, Factorizing infinite words using Maple, MapleTech Journal, vol. 4, no. 1, 1997, pp. 34-42
%H A211098 N. J. A. Sloane, <a href="/A211097/a211097.txt">Maple programs for A211097 etc.</a>
%e A211098 Here are the Lyndon factorizations of the first few binary vectors:
%e A211098 .0.
%e A211098 .1.
%e A211098 .0.0.
%e A211098 .01.
%e A211098 .1.0.
%e A211098 .1.1.
%e A211098 .0.0.0.
%e A211098 .001.
%e A211098 .01.0.
%e A211098 .011.
%e A211098 .1.0.0.
%e A211098 .1.01.
%e A211098 .1.1.0.
%e A211098 .1.1.1.
%e A211098 .0.0.0.0.
%e A211098 ...
%Y A211098 Cf. A001037 (number of Lyndon words of length m); A102659 (list thereof), A211100.
%Y A211098 Cf. A211095-A211099.
%K A211098 nonn
%O A211098 1,4
%A A211098 _N. J. A. Sloane_, Apr 01 2012