This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211111 #23 Nov 18 2021 12:13:36 %S A211111 1,0,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1, %T A211111 1,1,6,1,1,1,2,1,2,1,1,1,1,1,6,1,1,1,1,1,3,1,2,1,1,1,19,1,1,1,1,1,3,1, %U A211111 1,1,1,1,16,1,1,1,1,1,2,1,4,1,1,1,14,1 %N A211111 Number of partitions of n into distinct divisors > 1 of n. %C A211111 a(A136446(n)) > 1. %H A211111 Alois P. Heinz, <a href="/A211111/b211111.txt">Table of n, a(n) for n = 0..10000</a> (terms n=1..1000 from Reinhard Zumkeller) %e A211111 n=12: the divisors > 1 of 12 are {2,3,4,6,12}, there are exactly two subsets which sum up to 12, namely {12} and {2,4,6}, therefore a(12) = 2; %e A211111 a(13) = #{13} = 1, because 13 is prime, having no other divisor > 1; %e A211111 n=14: the divisors > 1 of 14 are {2,7,14}, {14} is the only subset summing up to 14, therefore a(14) = 1. %p A211111 with(numtheory): %p A211111 a:= proc(n) local b, l; l:= sort([(divisors(n) minus {1})[]]): %p A211111 b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0, %p A211111 b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i-1)))) %p A211111 end; forget(b): %p A211111 b(n, nops(l)) %p A211111 end: %p A211111 seq(a(n), n=0..100); # _Alois P. Heinz_, Nov 18 2021 %t A211111 a[n_] := Count[IntegerPartitions[n, All, Divisors[n] // Rest], P_ /; Reverse[P] == Union[P]]; %t A211111 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Nov 18 2021 *) %o A211111 (Haskell) %o A211111 a211111 n = p (tail $ a027750_row n) n where %o A211111 p _ 0 = 1 %o A211111 p [] _ = 0 %o A211111 p (k:ks) m | m < k = 0 %o A211111 | otherwise = p ks (m - k) + p ks m %Y A211111 Cf. A211110, A033630, A027750. %Y A211111 Cf. A065205, A136446. %K A211111 nonn %O A211111 0,13 %A A211111 _Reinhard Zumkeller_, Apr 01 2012 %E A211111 a(0)=1 prepended by _Alois P. Heinz_, Nov 18 2021