This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211159 #12 Aug 04 2018 04:11:04 %S A211159 0,0,0,0,1,0,1,0,1,0,2,0,1,1,1,0,2,0,2,1,1,0,3,0,1,1,2,0,3,0,2,1,1,1, %T A211159 3,0,1,1,3,0,3,0,2,2,1,0,4,0,2,1,2,0,3,1,3,1,1,0,5,0,1,2,2,1,3,0,2,1, %U A211159 3,0,5,0,1,2,2,1,3,0,4,1,1,0,5,1,1,1,3,0,5,1,2,1,1,1,5,0,2,2,3 %N A211159 Number of integer pairs (x,y) such that 0<x<y<=n and x*y=n+1. %C A211159 For a guide to related sequences, see A211266. %H A211159 Antti Karttunen, <a href="/A211159/b211159.txt">Table of n, a(n) for n = 1..10000</a> %F A211159 a(n) = (A000005(1+n) - A010052(1+n) - 2)/2 = A200213(1+n)/2. - _Antti Karttunen_, Jul 07 2017 %e A211159 a(11) counts these pairs: (2,6), (3,4). %t A211159 a = 1; b = n; z1 = 120; %t A211159 t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1}, {y, x + 1, b}]] %t A211159 c[n_, k_] := c[n, k] = Count[t[n], k] %t A211159 Table[c[n, n], {n, 1, z1}] (* A056924 *) %t A211159 Table[c[n, n + 1], {n, 1, z1}] (* A211159 *) %t A211159 Table[c[n, 2*n], {n, 1, z1}] (* A211261 *) %t A211159 Table[c[n, 3*n], {n, 1, z1}] (* A211262 *) %t A211159 Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211263 *) %t A211159 Print %t A211159 c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}] %t A211159 Table[c1[n, n], {n, 1, z1}] (* A211264 *) %t A211159 Table[c1[n, n + 1], {n, 1, z1}] (* A211265 *) %t A211159 Table[c1[n, 2*n], {n, 1, z1}] (* A211266 *) %t A211159 Table[c1[n, 3*n], {n, 1, z1}] (* A211267 *) %t A211159 Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *) %o A211159 (PARI) A211159(n) = (numdiv(1+n)-issquare(1+n)-2)/2; \\ _Antti Karttunen_, Jul 07 2017 %o A211159 (Scheme) (define (A211159 n) (/ (- (A000005 (+ 1 n)) (A010052 (+ 1 n)) 2) 2)) ;; _Antti Karttunen_, Jul 07 2017 %Y A211159 Cf. A000005, A010052, A200213, A211266. %K A211159 nonn %O A211159 1,11 %A A211159 _Clark Kimberling_, Apr 06 2012