A211161 Table T(n,k) = n, if k is odd, k/2 if k is even; n, k > 0, read by antidiagonals.
1, 1, 2, 1, 1, 3, 2, 2, 1, 4, 1, 2, 3, 1, 5, 3, 2, 2, 4, 1, 6, 1, 3, 3, 2, 5, 1, 7, 4, 2, 3, 4, 2, 6, 1, 8, 1, 4, 3, 3, 5, 2, 7, 1, 9, 5, 2, 4, 4, 3, 6, 2, 8, 1, 10, 1, 5, 3, 4, 5, 3, 7, 2, 9, 1, 11, 6, 2, 5, 4, 4, 6, 3, 8, 2, 10, 1, 12, 1, 6, 3, 5, 5, 4, 7, 3
Offset: 1
Examples
The start of the sequence as table for general case: b(1)..c(1)..b(1)..c(2)..b(1)..c(3)..b(1)..c(4)... b(2)..c(1)..b(2)..c(2)..b(2)..c(3)..b(2)..c(4)... b(3)..c(1)..b(3)..c(2)..b(3)..c(3)..b(3)..c(4)... b(4)..c(1)..b(4)..c(2)..b(4)..c(3)..b(4)..c(4)... b(5)..c(1)..b(5)..c(2)..b(5)..c(3)..b(5)..c(4)... b(6)..c(1)..b(6)..c(2)..b(6)..c(3)..b(6)..c(4)... b(7)..c(1)..b(7)..c(2)..b(7)..c(3)..b(7)..c(4)... b(8)..c(1)..b(8)..c(2)..b(8)..c(3)..b(8)..c(4)... . . . The start of the sequence as triangle array read by rows for general case: b(1); c(1),b(2); b(1),c(1),b(3); c(2),b(2),c(1),b(4); b(1),c(2),b(3),c(1),b(5); c(3),b(2),c(2),b(4),c(1),b(6); b(1),c(3),b(3),c(2),b(5),c(1),b(7); c(4),b(2),c(3),b(4),c(2),b(6),c(1),b(8); . . . Row number r contains r numbers. If r is odd b(1),c((r-1)/2),b(3),c((r-1)/2-1),b(5),c((r-1)/2-2),...c(1),b(r). If r is even c(r/2),b(2),c(r/2-1),b(4),c(r/2-2),b(6),...c(1),b(r). The start of the sequence as table for b(n)=n and c(k)=k: 1..1..1..2..1..3..1..4... 2..1..2..2..2..3..2..4... 3..1..3..2..3..3..3..4... 4..1..4..2..4..3..4..4... 5..1..5..2..5..3..5..4... 6..1..6..2..6..3..6..4... 7..1..7..2..7..3..7..4... 8..1..8..2..8..3..8..4... . . . The start of the sequence as triangle array read by rows for b(n)=n and c(k)=k: 1; 1,2; 1,1,3; 2,2,1,4; 1,2,3,1,5; 3,2,2,4,1,6; 1,3,3,2,5,1,7; 4,2,3,4,2,6,1,8; . . . Row number r contains r numbers. If r is odd 1,(r-1)/2,3,(r-1)/2-1,5,(r-1)/2-2,...1,r. If r id even r/2,2,r/2-1,4,r/2-1,6,...1,r.
Links
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
Programs
-
Python
def a(n): t=int((math.sqrt(8*n-7) - 1)/ 2) i=n-t*(t+1)//2 j=(t*t+3*t+4)//2-n return (1+(-1)**j)*j//4 - (-1+(-1)**j)*i//2
Formula
For the general case
As table T(n,k) = (1+(-1)^k)*c(k/2)/2 - (-1+(-1)^k)*b(n)/2.
As linear sequence
a(n) = (1+(-1)^j)*c(j/2)/2 - (-1+(-1)^j)*b(i)/2, where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t = floor((-1+sqrt(8*n-7))/2).
For b(n) = n and c(k) = k:
As table T(n,k) = (1+(-1)^k)*k/4 - (-1+(-1)^k)*n/2.
As linear sequence a(n) = (1+(-1)^A004736(n))*A004736(n)/4 - (-1+(-1)^A004736(n))*A002260(n)/2. a(n) = (1+(-1)^j)*j/4 - (-1+(-1)^j)*i/2,
where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t = floor((-1+sqrt(8*n-7))/2).
Comments