cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211169 The least n-almost Sophie Germain prime.

Original entry on oeis.org

2, 4, 52, 40, 688, 4900, 63112, 178240, 38272, 5357056, 1997824, 247221760, 586504192, 707436544, 15582115840, 47145459712, 77620412416, 1871289057280, 17787921498112, 10891875057664, 146305150615552, 535618317844480, 15921951753109504, 39754688251297792
Offset: 1

Views

Author

Keywords

Examples

			a(1)=2 because 2 and 5 are primes (A000040),
a(2)=4 because 4 and 9 are semiprimes (A001358),
a(3)=52 because the pair, 52 and 105, are 3-almost primes (A014612) and they are the least such pair,
a(4)=40 because the pair, 40 and 81, are 4-almost primes (A014613) and they are the least such pair, etc.
		

Crossrefs

Cf. A005384 (Sophie Germain primes), A111153 (Sophie Germain semiprimes), A111173 (Sophie Germain 3-almost primes), A111176 (Sophie Germain 4-almost primes), A211162 (Sophie Germain 5-almost primes).

Programs

  • Maple
    with(numtheory);
    A211169:=proc(q)
    local a,b,c,d,g,f,i,j,n;
    for j from 1 to q do for n from 1 to q do
        a:=ifactors(n)[2]; b:=nops(a); c:=ifactors(2*n+1)[2]; d:=nops(c); g:=0; f:=0;
        for i from 1 to b do g:=g+a[i][2]; od; for i from 1 to d do f:=f+c[i][2]; od;
        if g=f and g=j then print(n); break;
    fi; od; od; end:
    A211169(1000000000000);
  • Mathematica
    t = Table[0, {20}]; k = 2; While[k < 2700000001, x = PrimeOmega[k]; If[ t[[x]] == 0 && PrimeOmega[ 2k + 1] == x, t[[x]] = k; Print[{x, k}]]; k++]; t

Extensions

a(15)-a(24) from Giovanni Resta, Jan 31 2013