A211185 Numbers whose number of proper divisors equals the number of their anti-divisors.
1, 3, 9, 10, 14, 15, 21, 26, 28, 34, 51, 69, 75, 76, 88, 92, 99, 102, 104, 106, 110, 124, 134, 135, 136, 138, 141, 146, 164, 170, 231, 232, 236, 256, 258, 261, 268, 285, 290, 309, 321, 328, 386, 394, 405, 411, 424, 429, 441, 484, 490, 525, 531, 574, 580, 590, 602, 608, 614, 615, 620, 628, 639, 645, 651, 656, 658
Offset: 1
Keywords
Examples
28 is here since it has 5 proper divisors {2, 4, 7, 14, 28} and 5 anti-divisors {3, 5, 8, 11, 19}.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
for n from 1 to 700 do if A032741(n) = A066272(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Feb 03 2013
-
PARI
is(n)=numdiv(2*n+1)+numdiv(2*n-1)+numdiv(n>>valuation(n, 2))-numdiv(n)==4 || n==1 \\ Charles R Greathouse IV, Feb 04 2013
Extensions
Entries corrected by R. J. Mathar, Feb 03 2013
Comments