This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211204 #48 Jun 02 2022 10:31:14 %S A211204 2,3,5,11,17,23,41,47,53,71,83,101,107,113,131,137,167,173,191,197, %T A211204 233,251,257,263,311,317,347,353,401,431,443,461,467,503,521,563,593, %U A211204 641,647,653,677,683,701,743,761,773,797,827,857,863,881,911,941,947,971 %N A211204 a(1) = 2; for n > 1, a(n) > a(n-1) is the smallest prime for which the set {a(1), a(2), ..., a(n)} lacks at least one residue modulo every odd prime less than or equal to a(n). %C A211204 By construction, for every odd prime p > 1, the sequence does not contain a full residue system modulo p. For n >= 4, all differences a(n) - a(n-1) are multiples of 6; otherwise said, a(n) == 5 (mod 6). %C A211204 Conjecture: The sequence contains infinitely many "twins" with a(n)-a(n-1) = 6. %C A211204 All terms greater than 3 are 2 mod 3, so the sequence does not contain a complete residue system mod 3; all terms are not 4 mod 5, so the sequence does not contain a complete residue system mod 5; since 7 is absent in the sequence, there is not a complete residue system mod 7. %C A211204 By the Chinese remainder theorem and Dirichlet's theorem on arithmetic progressions, the sequence is infinite. - _Dimiter Skordev_, Apr 05 2022 %H A211204 Dimiter Skordev, <a href="/A211204/b211204.txt">Table of n, a(n) for n = 1..1000</a> (first 92 terms from Vladimir Shevelev and Peter J. C. Moses) %o A211204 (Python) %o A211204 def isPrime(n): %o A211204 if (n%2==0): return n==2 %o A211204 for i in range(3,int(n**0.5+1),2): %o A211204 if (n%i==0): return False %o A211204 return n>1 %o A211204 def nextPrime(n): %o A211204 n=n+1 %o A211204 while not isPrime(n): n=n+1 %o A211204 return n %o A211204 def a(n): %o A211204 p,L,S=2,[],[] %o A211204 while len(L)<n-1: %o A211204 p,S1,i=nextPrime(p),S,0 %o A211204 while (i<len(L)) and ((len(S[i])+2<L[i]) or (p%L[i] in S[i])): %o A211204 S1[i].add(p%L[i]) %o A211204 i=i+1 %o A211204 if i==len(L): %o A211204 S1.append(set(L)) %o A211204 S=S1 %o A211204 L.append(p) %o A211204 return p %o A211204 # _Dimiter Skordev_, Apr 05 2022 %Y A211204 Cf. A210537. %K A211204 nonn %O A211204 1,1 %A A211204 _Vladimir Shevelev_ and _Peter J. C. Moses_, Feb 04 2013 %E A211204 Edited by _M. F. Hasler_, Feb 13 2013