cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211214 Number of reduced Latin n-dimensional hypercubes of order 4; labeled n-ary loops of order 4 with fixed identity.

This page as a plain text file.
%I A211214 #38 Aug 24 2025 01:38:04
%S A211214 1,1,4,64,7132,201538000,432345572694417712,
%T A211214 3987683987354747642922773353963277968,
%U A211214 678469272874899582559986240285280710364867063489779510427038722229750276832
%N A211214 Number of reduced Latin n-dimensional hypercubes of order 4; labeled n-ary loops of order 4 with fixed identity.
%C A211214 The values are calculated recursively, based on the characterization by 2009. The number a(5) was found before (2001 and, independently, later works) by exhaustive computer-aided classification of the objects.
%H A211214 T. Ito, <a href="https://patents.google.com/patent/US7228311B2">Creation Method of Table, Creation Apparatus, Creation Program and Program Storage Medium</a>, U.S. Patent US7228311B2 and Patent application 20040243621, Dec. 2, 2004.
%H A211214 D. S. Krotov, V. N. Potapov, <a href="https://web.archive.org/web/20070831130214/http://www.ict.nsc.ru/ws/Lyap2001/2363/">On the reconstruction of N-quasigroups of order 4 and the upper bounds on their numbers</a>, Proc. Conference devoted to the 90th anniversary of Alexei A. Lyapunov (Novosibirsk, Russia, October 8-11, 2001), 2001.
%H A211214 D. S. Krotov, V. N. Potapov, <a href="http://arxiv.org/abs/math/0701519">n-Ary Quasigroups of Order 4</a>, SIAM J. Discrete Math. 23:2 (2009), 561-570, arXiv: math/0701519.
%H A211214 B. D. McKay, I. M. Wanless, <a href="https://doi.org/10.1137/070693874">A census of small latin hypercubes</a>, SIAM J. Discrete Math. 22:2 (2008) 719-736.
%H A211214 V. N. Potapov, D. S. Krotov, <a href="http://arxiv.org/abs/0912.5453">On the number of n-ary quasigroups of finite order</a>, Discrete Mathematics and Applications, 21:5-6 (2011), 575-586, arXiv:0912.5453.
%F A211214 a(n) = A211215(n)/(4*6^n).
%o A211214 (Python 2)
%o A211214 N=12 # the maximum arity to calculate
%o A211214 J,K=[[[[]]]],[[[[]]]]
%o A211214 for n in range(1,N+1):
%o A211214   J+=[[[]]] # create empty J[n][0]
%o A211214   K+=[[[]]] # create empty K[n][0]
%o A211214   for i in range(1,n):
%o A211214     J[n]+=[[]] # create empty J[n][i]
%o A211214     K[n]+=[[]]  # create empty K[n][i]
%o A211214     if (i<=n-i):
%o A211214       J[n][i] += J[n-i][i][:]
%o A211214       K[n][i] += map(lambda K_: [K_[0]+1]+K_[1:], K[n-i][i])
%o A211214     for j in range(i+1,n-i+1):
%o A211214       J[n][i] += map(lambda J_: [i]+J_, J[n-i][j])
%o A211214       K[n][i] += map(lambda K_: [1]+K_, K[n-i][j])
%o A211214   J[n]+=[[[n]]] # create J[n][n]
%o A211214   K[n]+=[[[1]]] # create K[n][n]
%o A211214 J = map(lambda Ji:sum(Ji,[]), J); K = map(lambda Ji:sum(Ji,[]), K) # merge groups
%o A211214 # now J[n] and K[n] represent a list of partitions of n into positive summands:
%o A211214 # n=J[n][i][0]*K[n][i][0]+J[n][i][1]*K[n][i][1]+J[n][i][2]*K[n][i][2]+...
%o A211214 # 0<J[n][i][0]<J[n][i][1]<J[n][i][2]<... -- summands; K[n][i][j]>0 -- multiplicities
%o A211214 map(lambda Ji:Ji.pop(), J); map(lambda Ki:Ki.pop(), K)  # remove the trivial 1-partitions
%o A211214 #
%o A211214 import math
%o A211214 F=map(lambda J1,K1,n:map(lambda J2,K2: reduce(lambda res, JK: res/JK, map(lambda J3,K3:math.factorial(K3)*math.factorial(J3)**K3, J2,K2), math.factorial(n)), J1,K1), J,K,range(N+1))
%o A211214 # F[n][i] is the number of partitions of an n-set that correspond to the partition J[n][i],K[n][i] of n.
%o A211214 La=map(lambda n:2L**(2**n-n-1), range(N+1))
%o A211214 Ras,Ra0,R_0,R_s,P_a,V,T = [0,0L],[0,0L],[0,0L],[0,0L],[0,0L],[1,1L],[4,24L]
%o A211214 for n in range(2,N+1):
%o A211214   V+=[0L]; T+=[0L]; P_a+=[0L]; Ras+=[0L]; Ra0+=[0L]; R_0+=[0L]; R_s+=[0L]
%o A211214   for i in range(len(K[n])):
%o A211214     R_0[n],Ra0[n],R_s[n],Ras[n] = map(lambda A,B,C :
%o A211214       A[n] + reduce(lambda r,t:r*(B[J[n][i][t]]-C*A[J[n][i][t]])**K[n][i][t],range(len(K[n][i])),((1-C)*P_a[sum(K[n][i])]+C)*F[n][i]),
%o A211214       (R_0,Ra0,R_s,Ras), (V,La,V,La), (0,0,1,1))
%o A211214   R_0[n] *= 3
%o A211214   P_a[n] = La[n] - Ra0[n] - 2*Ras[n]
%o A211214   V[n] = 3*P_a[n] + R_0[n] + 4*R_s[n]
%o A211214   T[n] = 4*(6**n)*V[n]
%o A211214 print "\n Reduced (A211214):", V
%o A211214 print "\n Total (A211215):", T
%Y A211214 Cf. A000315, A098843, A100539, A132205.
%K A211214 nonn,changed
%O A211214 0,3
%A A211214 _Denis S. Krotov_ and Vladimir N. Potapov, Apr 06 2012