This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211215 #28 Aug 24 2025 04:16:46 %S A211215 4,24,576,55296,36972288,6268637952000,80686060158523011084288, %T A211215 4465185218736554544676917926460256725000192, %U A211215 4558271384916189349044295395852008182480786230841798008741684281906576963885826048 %N A211215 Total number of Latin n-dimensional hypercubes of order 4; labeled n-ary quasigroups of order 4. %C A211215 The values are calculated recursively, based on the characterization by 2009. The number a(5) was found before (2001 and, independently, later works) by exhaustive computer-aided classification of the objects. %D A211215 T. Ito, Creation Method of Table, Creation Apparatus, Creation Program and Program Storage Medium, U.S. Patent application 20040243621, Dec 02 2004. %H A211215 Denis S. Krotov and Vladimir N. Potapov, <a href="https://web.archive.org/web/20070831130214/http://www.ict.nsc.ru/ws/Lyap2001/2363/">On the reconstruction of N-quasigroups of order 4 and the upper bounds on their numbers</a>, Proc. Conference devoted to the 90th anniversary of Alexei A. Lyapunov (Novosibirsk, Russia, October 8-11, 2001), 2001. %H A211215 Denis S. Krotov and Vladimir N. Potapov, <a href="http://arxiv.org/abs/math/0701519">n-Ary Quasigroups of Order 4</a>, arXiv:math/0701519 [math.CO], 2007-2008; SIAM J. Discrete Math. 23:2 (2009), 561-570. %H A211215 B. D. McKay and I. M. Wanless, <a href="http://dx.doi.org/10.1137/070693874">A census of small latin hypercubes</a>, SIAM J. Discrete Math. 22, (2008) 719-736. %H A211215 Vladimir N. Potapov and Denis S. Krotov, <a href="http://arxiv.org/abs/0912.5453">On the number of n-ary quasigroups of finite order</a>, arXiv:0912.5453 [math.CO], 2009-2016; Discrete Mathematics and Applications, 21:5-6 (2011), 575-586. %F A211215 a(n) = 4*6^n * A211214(n). %o A211215 (Python) # See A211214. %Y A211215 Cf. A002860, A098679, A100540, A132206. %K A211215 nonn,changed %O A211215 0,1 %A A211215 _Denis S. Krotov_ and Vladimir N. Potapov, Apr 06 2012