This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211224 #14 May 24 2012 20:59:10 %S A211224 3,32,117,183,393,728,933,2193,2528,1173,6136,2990,4070,8211,11488, %T A211224 12616,6112,22287,20584,37468,38675,35245,41416,55825,43616,66385, %U A211224 56810,94040,88736,93975,90068,174515,169376,146965,139196,210453,140576,177248 %N A211224 Least k with precisely n partitions k = x + y satisfying sigma(k) = sigma(x) + sigma(y). %C A211224 Subset of A211223. %H A211224 Donovan Johnson, <a href="/A211224/b211224.txt">Table of n, a(n) for n = 1..100</a> %e A211224 a(7)=933; 933 has 7 partitions of two numbers, x and y, for which sigma(933) = sigma(x) + sigma(y) = 1248. In fact: %e A211224 sigma(311) + sigma(622) = 312 + 936 = 1248; %e A211224 sigma(322) + sigma(611) = 576 + 672 = 1248; %e A211224 sigma(370) + sigma(563) = 684 + 564 = 1248; %e A211224 sigma(391) + sigma(542) = 432 + 816 = 1248; %e A211224 sigma(398) + sigma(535) = 600 + 648 = 1248; %e A211224 sigma(407) + sigma(526) = 456 + 792 = 1248; %e A211224 sigma(442) + sigma(491) = 756 + 492 = 1248; %e A211224 Furthermore 933 is the minimum number to have this property. %p A211224 with(numtheory); %p A211224 A211224:=proc(q) %p A211224 local a,b,i,j,n,v; %p A211224 v:=array(1..10000); for n from 1 to 10000 do v[n]:=0; od; %p A211224 a:=0; %p A211224 for n from 1 to q do %p A211224 b:=0; %p A211224 for i from 1 to trunc(n/2) do %p A211224 if sigma(i)+sigma(n-i)=sigma(n) then b:=b+1; fi; od; %p A211224 if b=a+1 then a:=b; print(n); j:=1; %p A211224 while v[b+j]>0 do a:=b+j; print(v[b+j]); j:=j+1; od; %p A211224 else if b>a+1 then if v[b]=0 then v[b]:=n; fi; fi; fi; %p A211224 od; end: %p A211224 A211224(1000); %o A211224 (PARI) ct(n)=my(t=sigma(n));sum(i=1,n\2,sigma(i)+sigma(n-i)==t) %o A211224 v=vector(100);for(n=1,1e5,t=ct(n);if(t&&t<=#v&&!v[t],v[t]=n));v %o A211224 \\ _Charles R Greathouse IV_, May 04 2012 %Y A211224 Cf. A083207, A204830, A204831, A211223, A211225. %K A211224 nonn %O A211224 1,1 %A A211224 _Paolo P. Lava_, May 04 2012