This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211225 #12 May 04 2023 15:56:14 %S A211225 0,0,1,0,0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,2,1,0, %T A211225 0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,2,1,2,0,0,0,0,1,2,0,0,0,0,0, %U A211225 2,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,2 %N A211225 Number of ways to represent sigma(n) as sigma(x) + sigma(y) where x+y = n. %C A211225 From an idea of Charles R Greathouse IV. %C A211225 a(A211223(n)) > 0. - _Reinhard Zumkeller_, Jan 06 2013 %H A211225 Paolo P. Lava, <a href="/A211225/b211225.txt">Table of n, a(n) for n = 1..10000</a> %e A211225 a(3)=1 because sigma(3)=sigma(1)+sigma(2)=4; %e A211225 a(32)=2 because sigma(32)=sigma(4)+sigma(28)=sigma(14)+sigma(18)=63; %e A211225 a(117)=3 because sigma(117)=sigma(41)+sigma(76)=sigma(52)+sigma(65)=sigma(56)+sigma(61)=182; etc. %p A211225 with(numtheory); %p A211225 A211225:=proc(q) %p A211225 local b,i,n; %p A211225 for n from 1 to q do %p A211225 b:=0; %p A211225 for i from 1 to trunc(n/2) do %p A211225 if sigma(i)+sigma(n-i)=sigma(n) then b:=b+1; fi; %p A211225 od; %p A211225 print(b) %p A211225 od; end: %p A211225 A211225(1000); %t A211225 a[n_] := With[{s = DivisorSigma[1, n]}, Sum[Boole[s == DivisorSigma[1, x] + DivisorSigma[1, n-x]], {x, 1, Quotient[n, 2]}]]; %t A211225 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, May 04 2023 *) %o A211225 (PARI) a(n)=my(t=sigma(n)); sum(i=1, n\2, sigma(i)+sigma(n-i)==t) \\ _Charles R Greathouse IV_, May 07 2012 %o A211225 (Haskell) %o A211225 a211225 n = length $ filter (== a000203 n) $ zipWith (+) us' vs where %o A211225 (us,vs@(v:_)) = splitAt (fromInteger $ (n - 1) `div` 2) a000203_list %o A211225 us' = if even n then v : reverse us else reverse us %o A211225 -- _Reinhard Zumkeller_, Jan 06 2013 %Y A211225 Cf. A083207, A204830, A204831, A211223, A211224. %Y A211225 Cf. A000203. %K A211225 nonn %O A211225 1,32 %A A211225 _Paolo P. Lava_, May 07 2012