cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211229 Matrix inverse of lower triangular array A211226.

This page as a plain text file.
%I A211229 #39 Feb 12 2023 10:52:08
%S A211229 1,-1,1,0,-1,1,0,0,-1,1,1,0,0,-2,1,-1,1,0,0,-1,1,2,-3,3,0,0,-3,1,-2,2,
%T A211229 -3,3,0,0,-1,1,9,-8,8,-12,6,0,0,-4,1,-9,9,-8,8,-6,6,0,0,-1,1,44,-45,
%U A211229 45,-40,20,-30,10,0,0,-5,1,-44,44,-45,45,-20,20,-10,10,0,0,-1,1
%N A211229 Matrix inverse of lower triangular array A211226.
%C A211229 This triangle is related to the derangement numbers. The subtriangles (T(2*n,2*k))n,k>=0, -(T(2*n+1,2*k))n,k>=0, and (T(2*n+1,2*k+1))n,k>=0 are all equal to A008290, while the subtriangle (T(2*n,2*k+1))n,k>=0 equals -A180188 (with an extra initial row of zeros).
%F A211229 T(2*n,2*k) = T(2*n+1,2*k+1) = -T(2*n+1,2*k) = binomial(n,k)*A000166(n-k) = (n!/k!)*Sum_{i = 0..n-k} (-1)^i/i!;
%F A211229 T(2*n,2*k+1) = -n*binomial(n-1,k)*A000166(n-k-1) = -(n!/k!)*Sum_{i = 0..n-k-1} (-1)^i/i!.
%F A211229 T(n,k) = T(n-k,0)*A211226(n,k).
%F A211229 Column entries:
%F A211229 T(2*n,0) = A000166(n), T(2*n,2) = A000240(n), T(2*n,4) = A000387(n), T(2*n,6) = A000449(n), T(2*n,8) = A000475(n).
%F A211229 From _Manfred Boergens_, Jan 10 2023: (Start)
%F A211229 With b(j) = floor(j/2); h = 1 for n even and k odd, h = 0 else:
%F A211229 T(n,k) = (-1)^(n+k)*(b(n)!/b(k)!)*Sum_{i = 0..b(n-k)-h} (-1)^i/i!.
%F A211229 Sum-free formula:
%F A211229 T(n,k) = (-1)^(n+k)*(b(n)!/b(k)!) for n-k < 2.
%F A211229 T(n,k) = (-1)^(n+k)*(b(n)!/b(k)!)*round((b(n-k)-h)!/exp(1))/(b(n-k)-h)!) otherwise. (End)
%e A211229 Triangle begins:
%e A211229    n\k |    0    1    2    3    4    5    6    7    8    9
%e A211229   =====+==================================================
%e A211229     0  |    1
%e A211229     1  |   -1    1
%e A211229     2  |    0   -1    1
%e A211229     3  |    0    0   -1    1
%e A211229     4  |    1    0    0   -2    1
%e A211229     5  |   -1    1    0    0   -1    1
%e A211229     6  |    2   -3    3    0    0   -3    1
%e A211229     7  |   -2    2   -3    3    0    0   -1    1
%e A211229     8  |    9   -8    8  -12    6    0    0   -4    1
%e A211229     9  |   -9    9   -8    8   -6    6    0    0   -1    1
%e A211229   ...
%t A211229 b[j_] = Floor[j/2]; h = If[EvenQ[n] && OddQ[k], 1, 0];
%t A211229 Table[(-1)^(n+k) (b[n]!/b[k]!) Sum[(-1)^i/i!, {i, 0, b[n-k]-h}], {n, 0, 31}, {k, 0, n}] //Flatten (* _Manfred Boergens_, Jan 10 2023 *)
%t A211229 (* Sum-free code *)
%t A211229 b[j_] = Floor[j/2]; h = If[EvenQ[n] && OddQ[k], 1, 0];
%t A211229 T[n_, k_] = (-1)^(n+k) (b[n]!/b[k]!) If[n-k<2, 1, Round[(b[n-k]-h)!/E]/(b[n-k]-h)!];
%t A211229 Table[T[n, k], {n, 0, 31}, {k, 0, n}] // Flatten
%t A211229 (* _Manfred Boergens_, Jan 10 2023 *)
%o A211229 (PARI) f(n) = (n\2)!; \\ A081123
%o A211229 T(n,k) = f(n)/(f(k)*f(n-k)); \\ A211226
%o A211229 tabl(nn) = my(m=matrix(nn, nn, n, k, if (n>=k, T(n-1,k-1), 0))); 1/m; \\ _Michel Marcus_, Jan 10 2023
%Y A211229 Cf. A000166, A000240, A000387, A000449, A000475, A008290, A180188, A211226.
%K A211229 sign,easy,tabl
%O A211229 0,14
%A A211229 _Peter Bala_, Apr 05 2012
%E A211229 More terms from _Manfred Boergens_, Jan 10 2023