This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211235 #31 Feb 18 2025 21:18:57
%S A211235 1,1,2,1,4,3,1,7,10,4,1,12,27,20,5,1,21,69,77,35,6,1,38,176,272,182,
%T A211235 56,7,1,71,456,936,846,378,84,8,1,136,1205,3210,3750,2232,714,120,9,1,
%U A211235 265,3247,11075,16290,12342,5214,1254,165,10
%N A211235 Array of generalized Eulerian numbers C(n,k) read by antidiagonals.
%H A211235 D. H. Lehmer, <a href="https://doi.org/10.1016/0097-3165(82)90020-6">Generalized Eulerian numbers</a>, J. Combin. Theory Ser.A 32 (1982), no. 2, 195-215. MR0654621 (83k:10026).
%F A211235 From _Peter Bala_, Oct 27 2015: (Start)
%F A211235 O.g.f. of n-th row of square array: 1/(1 - x)^n * (x*d/dx)^n log(1/(1 - x)), for n >= 1.
%F A211235 E.g.f. of square array: log((1 - x)/(1 - x*exp(t/(1 - x)))).
%F A211235 Read as a triangle: T(n,k) = Sum_{i = 1..k} binomial(n-i,k-i)*i^(n-k) for 1 <= k <= n.
%F A211235 n-th row polynomial of triangle: Sum_{i = 0..n-1} x^i*(x + i)^(n-i). (End)
%e A211235 Array begins:
%e A211235 1, 2, 3, 4, 5, 6, ... A000027
%e A211235 1, 4, 10, 20, 35, 56, ... A000292
%e A211235 1, 7, 27, 77, 182, 378, ... A005585
%e A211235 1, 12, 69, 272, 846, 2232, ... A101097
%e A211235 1, 21, 176, 936, 3750, 12342, ... A254681
%e A211235 A005126,
%e A211235 ...
%e A211235 Triangle begins:
%e A211235 1
%e A211235 1 2
%e A211235 1 4 3
%e A211235 1 7 10 4
%e A211235 1 12 27 20 5
%e A211235 1 21 69 77 35 6
%e A211235 1 38 176 272 182 56 7
%e A211235 ...
%p A211235 A211235 := (n, k) -> add(binomial(n-i, k-i)*i^(n-k), i = 1 .. k): for n from 1 to 10 do seq(A211235(n, k), k = 1 .. n) end do; # _Peter Bala_, Oct 27 2015
%t A211235 T[n_, k_] := Sum[Binomial[n-i, k-i] * i^(n-k), {i, 1, k}]; Table[T[n, k], {n,1,10}, {k,1,n}] //Flatten (* _Amiram Eldar_, Nov 30 2018 *)
%Y A211235 Cf. A008292, A211232-A211235.
%K A211235 nonn,tabl
%O A211235 1,3
%A A211235 _N. J. A. Sloane_, Apr 05 2012
%E A211235 Terms a(37)-a(55) added by _Peter Bala_, Oct 27 2015