This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211242 #19 Jul 17 2024 04:47:40 %S A211242 0,0,1,2,10,12,16,9,11,14,6,4,40,3,23,26,58,60,33,35,36,78,82,88,12, %T A211242 10,102,106,108,112,126,130,136,23,37,150,156,27,83,43,178,60,19,96, %U A211242 14,198,105,222,226,228,232,17,20,250,256,131,134,270,276,56,141 %N A211242 Order of 6 mod n-th prime: least k such that prime(n) divides 6^k-1. %H A211242 T. D. Noe, <a href="/A211242/b211242.txt">Table of n, a(n) for n = 1..1000</a> %p A211242 A211242 := proc(n) %p A211242 if n<= 2 then %p A211242 0 ; %p A211242 else %p A211242 numtheory[order](6,ithprime(n)) ; %p A211242 end if; %p A211242 end proc: %p A211242 seq(A211242(n),n=1..80) ; # _R. J. Mathar_, Jul 17 2024 %t A211242 nn = 6; Table[If[Mod[nn, p] == 0, 0, MultiplicativeOrder[nn, p]], {p, Prime[Range[100]]}] %o A211242 (GAP) A000040:=Filtered([1..350],IsPrime);; %o A211242 List([1..Length(A000040)],n->OrderMod(6,A000040[n])); # _Muniru A Asiru_, Feb 06 2019 %o A211242 (PARI) a(n,{base=6}) = my(p=prime(n)); if(base%p, znorder(Mod(base,p)), 0) \\ _Jianing Song_, May 13 2024 %Y A211242 Cf. A019336 (full reptend primes in base 6). %Y A211242 In other bases: A014664, A062117, A082654, A211241, A211243, A211244, A211245, A002371. %K A211242 nonn,easy %O A211242 1,4 %A A211242 _T. D. Noe_, Apr 11 2012