cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211244 Order of 8 mod n-th prime: least k such that prime(n) divides 8^k-1.

This page as a plain text file.
%I A211244 #21 May 13 2024 12:22:14
%S A211244 0,2,4,1,10,4,8,6,11,28,5,12,20,14,23,52,58,20,22,35,3,13,82,11,16,
%T A211244 100,17,106,12,28,7,130,68,46,148,5,52,54,83,172,178,60,95,32,196,33,
%U A211244 70,37,226,76,29,119,8,50,16,131,268,45,92,70,94,292,34,155,52
%N A211244 Order of 8 mod n-th prime: least k such that prime(n) divides 8^k-1.
%H A211244 T. D. Noe, <a href="/A211244/b211244.txt">Table of n, a(n) for n = 1..1000</a>
%F A211244 a(n) = A014664(n)/gcd(3, A014664(n)). - _Jianing Song_, May 13 2024
%t A211244 nn = 8; Table[If[Mod[nn, p] == 0, 0, MultiplicativeOrder[nn, p]], {p, Prime[Range[100]]}]
%o A211244 (GAP) A000040:=Filtered([1..350],IsPrime);;
%o A211244 List([1..Length(A000040)],n->OrderMod(8,A000040[n])); # _Muniru A Asiru_, Feb 06 2019
%o A211244 (PARI) a(n,{base=8}) = my(p=prime(n)); if(base%p, znorder(Mod(base,p)), 0) \\ _Jianing Song_, May 13 2024
%Y A211244 Cf. A053451 (order of 8 mod 2n+1), A019338 (full reptend primes in base 8).
%Y A211244 In other bases: A014664, A062117, A082654, A211241, A211242, A211243, A211245, A002371, A372801.
%K A211244 nonn,easy
%O A211244 1,2
%A A211244 _T. D. Noe_, Apr 11 2012