This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211251 #7 Apr 07 2012 17:13:06 %S A211251 1,15,4125,4201207,10454906015,51619504083157,445183896786430439, %T A211251 6151183312376366042809,127892318444027363237894001, %U A211251 3815107763405827557700743314007,157278812586433713743644391748289829,8693308684725580082237757157480179540583 %N A211251 E.g.f.: exp(-1)*Sum_{n>=0} (1+x)^(n^4)/n!. %F A211251 a(n) = Sum_{k=0..n} Stirling1(n, k)*Bell(4*k). %F A211251 a(n) = n!*exp(-1)*Sum_{k>=[n^(1/4)]} binomial(k^4,n)/k!. %e A211251 E.g.f.: A(x) = 1 + 15*x + 4125*x^2/2! + 4201207*x^3/3! + 10454906015*x^4/4! +... %e A211251 such that %e A211251 A(x) = exp(-1)*(1 + (1+x) + (1+x)^16/2! + (1+x)^81/3! + (1+x)^256/4! +...). %o A211251 (PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)} %o A211251 {Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)} %o A211251 {a(n)=sum(k=0, n, Stirling1(n, k)*Bell(4*k))} %o A211251 for(n=0,15,print1(a(n),", ")) %Y A211251 Cf. A000110 (Bell), A014507, A211250, A211252. %K A211251 nonn %O A211251 0,2 %A A211251 _Paul D. Hanna_, Apr 07 2012