This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211252 #5 Apr 07 2012 17:13:28 %S A211252 1,52,115923,1382610724,51715861759515,4638073139045397206, %T A211252 846679440053068198564757,281582422101970811697025996458, %U A211252 157442703858164474987714673019721909,139252837198831456324098952617013102583100,185718002275320639405130518085966960592675564591 %N A211252 E.g.f.: exp(-1)*Sum_{n>=0} (1+x)^(n^5)/n!. %F A211252 a(n) = Sum_{k=0..n} Stirling1(n, k)*Bell(5*k). %F A211252 a(n) = n!*exp(-1)*Sum_{k>=[n^(1/5)]} binomial(k^5,n)/k!. %e A211252 E.g.f.: A(x) = 1 + 52*x + 115923*x^2/2! + 1382610724*x^3/3! + 51715861759515*x^4/4! +... %e A211252 such that %e A211252 A(x) = exp(-1)*(1 + (1+x) + (1+x)^32/2! + (1+x)^243/3! + (1+x)^1024/4! +...). %o A211252 (PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)} %o A211252 {Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)} %o A211252 {a(n)=sum(k=0, n, Stirling1(n, k)*Bell(5*k))} %o A211252 for(n=0,15,print1(a(n),", ")) %Y A211252 Cf. A000110 (Bell), A014507, A211250, A211251. %K A211252 nonn %O A211252 0,2 %A A211252 _Paul D. Hanna_, Apr 07 2012