This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211261 #17 Sep 30 2018 10:42:02 %S A211261 0,0,1,1,1,2,1,1,2,2,1,3,1,2,3,2,1,3,1,3,3,2,1,4,2,2,3,3,1,5,1,2,3,2, %T A211261 3,5,1,2,3,4,1,5,1,3,5,2,1,5,2,3,3,3,1,5,3,4,3,2,1,7,1,2,5,3,3,5,1,3, %U A211261 3,5,1,6,1,2,5,3,3,5,1,5,4,2,1,7,3,2,3,4,1,8,3,3,3,2,3,6,1,3,5 %N A211261 Number of integer pairs (x,y) such that 0<x<y<=n and x*y=2n. %C A211261 For a guide to related sequences, see A211266. %H A211261 Antti Karttunen, <a href="/A211261/b211261.txt">Table of n, a(n) for n = 1..65537</a> %F A211261 a(n) = floor(A000005(2*n)/2)-1. - _Antti Karttunen_, Sep 30 2018, after _David A. Corneth_'s PARI-program %t A211261 a = 1; b = n; z1 = 120; %t A211261 t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1}, %t A211261 {y, x + 1, b}]] %t A211261 c[n_, k_] := c[n, k] = Count[t[n], k] %t A211261 Table[c[n, n], {n, 1, z1}] (* A056924 *) %t A211261 Table[c[n, n + 1], {n, 1, z1}] (* A211159 *) %t A211261 Table[c[n, 2*n], {n, 1, z1}] (* A211261 *) %t A211261 Table[c[n, 3*n], {n, 1, z1}] (* A211262 *) %t A211261 Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211263 *) %t A211261 Print %t A211261 c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}] %t A211261 Table[c1[n, n], {n, 1, z1}] (* A211264 *) %t A211261 Table[c1[n, n + 1], {n, 1, z1}] (* A211265 *) %t A211261 Table[c1[n, 2*n], {n, 1, z1}] (* A211266 *) %t A211261 Table[c1[n, 3*n], {n, 1, z1}] (* A211267 *) %t A211261 Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *) %o A211261 (PARI) A211261(n) = sumdiv(2*n,y,(((2*n/y)<y)&&(y<=n))); \\ _Antti Karttunen_, Sep 30 2018 %o A211261 (PARI) a(n) = numdiv(n<<1)>>1-1 \\ _David A. Corneth_, Sep 30 2018 %Y A211261 Cf. A000005, A099777, A211266, A211270. %K A211261 nonn %O A211261 1,6 %A A211261 _Clark Kimberling_, Apr 06 2012