This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211263 #4 Apr 11 2012 18:49:18 %S A211263 0,0,0,1,1,1,1,1,1,1,1,2,2,1,1,2,2,1,1,2,2,1,1,3,3,1,1,2,2,2,2,2,2,1, %T A211263 1,3,3,1,1,3,3,2,2,2,2,1,1,4,4,1,1,2,2,2,2,3,3,1,1,4,4,1,1,3,3,2,2,2, %U A211263 2,2,2,4,4,1,1,2,2,2,2,4,4,1,1,4,4,1,1,3,3,3,3,2,2,1,1,5,5,1,1 %N A211263 Number of integer pairs (x,y) such that 0<x<y<=n and x*y=floor(n/2). %C A211263 For a guide to related sequences, see A211266. %e A211263 a(12) counts these pairs: (1,6) and (2,3). %t A211263 a = 1; b = n; z1 = 120; %t A211263 t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1}, %t A211263 {y, x + 1, b}]] %t A211263 c[n_, k_] := c[n, k] = Count[t[n], k] %t A211263 Table[c[n, n], {n, 1, z1}] (* A056924 *) %t A211263 Table[c[n, n + 1], {n, 1, z1}] (* A211159 *) %t A211263 Table[c[n, 2*n], {n, 1, z1}] (* A211261 *) %t A211263 Table[c[n, 3*n], {n, 1, z1}] (* A211262 *) %t A211263 Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211263 *) %t A211263 Print %t A211263 c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}] %t A211263 Table[c1[n, n], {n, 1, z1}] (* A211264 *) %t A211263 Table[c1[n, n + 1], {n, 1, z1}] (* A211265 *) %t A211263 Table[c1[n, 2*n], {n, 1, z1}] (* A211266 *) %t A211263 Table[c1[n, 3*n], {n, 1, z1}] (* A211267 *) %t A211263 Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *) %Y A211263 Cf. A211266. %K A211263 nonn %O A211263 1,12 %A A211263 _Clark Kimberling_, Apr 06 2012