This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211266 #5 Apr 07 2012 13:47:08 %S A211266 0,1,3,5,7,10,12,15,18,21,24,28,30,34,38,41,44,49,51,56,60,63,67,72, %T A211266 75,79,83,88,91,97,99,104,109,112,117,123,125,130,135,140,143,149,152, %U A211266 157,163,167,170,177,180,186,190,194,199,205,209,215,219,223 %N A211266 Number of integer pairs (x,y) such that 0<x<y<=n and x*y<=2n. %C A211266 Guide to related sequences: %C A211266 A056924 ... 1<=x<y<=n .... x*y=n %C A211266 A211159 ... 1<=x<y<=n .... x*y=n+1 %C A211266 A211261 ... 1<=x<y<=n .... x*y=2n %C A211266 A211262 ... 1<=x<y<=n .... x*y=3n %C A211266 A211263 ... 1<=x<y<=n .... x*y=floor(n/2) %C A211266 A211264 ... 1<=x<y<=n .... x*y<=n %C A211266 A211265 ... 1<=x<y<=n .... x*y<=n+1 %C A211266 A211266 ... 1<=x<y<=n .... x*y<=2n %C A211266 A211267 ... 1<=x<y<=n .... x*y<=3n %C A211266 A181972 ... 1<=x<y<=n .... x*y<=floor(n/2) %C A211266 A038548 ... 1<=x<=y<=n ... x*y=n %C A211266 A072670 ... 1<=x<=y<=n ... x*y=n+1 %C A211266 A211270 ... 1<=x<=y<=n ... x*y=2n %C A211266 A211271 ... 1<=x<=y<=n ... x*y=3n %C A211266 A211272 ... 1<=x<=y<=n ... x*y=floor(n/2) %C A211266 A094820 ... 1<=x<=y<=n ... x*y<=n %C A211266 A091627 ... 1<=x<=y<=n ... x*y<=n+1 %C A211266 A211273 ... 1<=x<=y<=n ... x*y<=2n %C A211266 A211274 ... 1<=x<=y<=n ... x*y<=3n %C A211266 A211275 ... 1<=x<=y<=n ... x*y<=floor(n/2) %e A211266 a(6) counts these pairs: (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4). %t A211266 a = 1; b = n; z1 = 120; %t A211266 t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1}, %t A211266 {y, x + 1, b}]] %t A211266 c[n_, k_] := c[n, k] = Count[t[n], k] %t A211266 Table[c[n, n], {n, 1, z1}] (* A056924 *) %t A211266 Table[c[n, n + 1], {n, 1, z1}] (* A211159 *) %t A211266 Table[c[n, 2*n], {n, 1, z1}] (* A211261 *) %t A211266 Table[c[n, 3*n], {n, 1, z1}] (* A211262 *) %t A211266 Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211263 *) %t A211266 Print %t A211266 c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}] %t A211266 Table[c1[n, n], {n, 1, z1}] (* A211264 *) %t A211266 Table[c1[n, n + 1], {n, 1, z1}] (* A211265 *) %t A211266 Table[c1[n, 2*n], {n, 1, z1}] (* A211266 *) %t A211266 Table[c1[n, 3*n], {n, 1, z1}] (* A211267 *) %t A211266 Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *) %Y A211266 Cf. A211261, A211264. %K A211266 nonn %O A211266 1,3 %A A211266 _Clark Kimberling_, Apr 06 2012