This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211267 #10 Oct 18 2019 16:46:36 %S A211267 0,1,3,6,9,12,16,20,23,28,32,37,40,46,51,56,60,65,71,77,81,87,91,99, %T A211267 103,109,115,121,125,133,138,145,150,156,163,169,174,181,187,196,199, %U A211267 207,212,220,226,232,239,247,252,259,265,274,277,287,293,301,307 %N A211267 Number of integer pairs (x,y) such that 0<x<y<=n and x*y<=3n. %C A211267 For a guide to related sequences, see A211266. %H A211267 Robert Israel, <a href="/A211267/b211267.txt">Table of n, a(n) for n = 1..10000</a> %e A211267 a(5) counts these pairs: (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5). %p A211267 N:= 100: # for a(1)..a(N) %p A211267 L:= Vector(N): %p A211267 for x from 1 to floor(sqrt(N)) do %p A211267 for y from x+1 while y<=N and x*y<=3*N do %p A211267 n0:= max(y, ceil(x*y/3)); %p A211267 L[n0]:= L[n0]+1; %p A211267 od od: %p A211267 ListTools:-PartialSums(convert(L,list)); # _Robert Israel_, Oct 18 2019 %t A211267 a = 1; b = n; z1 = 120; %t A211267 t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1}, %t A211267 {y, x + 1, b}]] %t A211267 c[n_, k_] := c[n, k] = Count[t[n], k] %t A211267 Table[c[n, n], {n, 1, z1}] (* A056924 *) %t A211267 Table[c[n, n + 1], {n, 1, z1}] (* A211159 *) %t A211267 Table[c[n, 2*n], {n, 1, z1}] (* A211261 *) %t A211267 Table[c[n, 3*n], {n, 1, z1}] (* A211262 *) %t A211267 Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211263 *) %t A211267 Print %t A211267 c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}] %t A211267 Table[c1[n, n], {n, 1, z1}] (* A211264 *) %t A211267 Table[c1[n, n + 1], {n, 1, z1}] (* A211265 *) %t A211267 Table[c1[n, 2*n], {n, 1, z1}] (* A211266 *) %t A211267 Table[c1[n, 3*n], {n, 1, z1}] (* A211267 *) %t A211267 Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *) %Y A211267 Cf. A211266. %K A211267 nonn %O A211267 1,3 %A A211267 _Clark Kimberling_, Apr 06 2012