This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211271 #10 Jan 15 2025 22:45:39 %S A211271 0,0,1,1,1,1,1,2,1,2,1,3,1,2,2,3,1,2,1,4,2,2,1,4,2,2,2,4,1,4,1,4,2,2, %T A211271 3,4,1,2,2,6,1,4,1,4,3,2,1,6,2,4,2,4,1,3,3,6,2,2,1,7,1,2,3,5,3,4,1,4, %U A211271 2,6,1,6,1,2,4,4,3,4,1,8,2,2,1,7,3,2,2,6,1,6,3,4,2,2,3,7,1,4,3,7,1,4,1,6,5,2,1,6 %N A211271 Number of integer pairs (x,y) such that 0<x<=y<=n and x*y=3n. %C A211271 For a guide to related sequences, see A211266. %H A211271 Antti Karttunen, <a href="/A211271/b211271.txt">Table of n, a(n) for n = 1..20000</a> %e A211271 a(3) counts this pair: (3,3). - _Antti Karttunen_, Jan 15 2025 %e A211271 a(20) counts these pairs: (3,20), (4,15), (5,12), (6,10). %t A211271 a = 1; b = n; z1 = 120; %t A211271 t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1}, %t A211271 {y, x, b}]] %t A211271 c[n_, k_] := c[n, k] = Count[t[n], k] %t A211271 Table[c[n, n], {n, 1, z1}] (* A038548 *) %t A211271 Table[c[n, n + 1], {n, 1, z1}] (* A072670 *) %t A211271 Table[c[n, 2*n], {n, 1, z1}] (* A211270 *) %t A211271 Table[c[n, 3*n], {n, 1, z1}] (* A211271 *) %t A211271 Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211272 *) %t A211271 c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}] %t A211271 Print %t A211271 Table[c1[n, n], {n, 1, z1}] (* A094820 *) %t A211271 Table[c1[n, n + 1], {n, 1, z1}] (* A091627 *) %t A211271 Table[c1[n, 2*n], {n, 1, z1}] (* A211273 *) %t A211271 Table[c1[n, 3*n], {n, 1, z1}] (* A211274 *) %t A211271 Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *) %o A211271 (PARI) A211271(n) = { my(n3=3*n); sumdiv(n3,d,(d <= (n3/d) && (n3/d) <= n)); }; \\ _Antti Karttunen_, Jan 15 2025 %Y A211271 Cf. A211266. %Y A211271 Cf. also A211262. %K A211271 nonn %O A211271 1,8 %A A211271 _Clark Kimberling_, Apr 07 2012 %E A211271 Data section extended up to a(108) and a(3) corrected from 0 to 1 by _Antti Karttunen_, Jan 15 2025