This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211272 #14 Sep 08 2022 08:46:02 %S A211272 0,1,1,1,1,1,1,2,2,1,1,2,2,1,1,2,2,2,2,2,2,1,1,3,3,1,1,2,2,2,2,3,3,1, %T A211272 1,3,3,1,1,3,3,2,2,2,2,1,1,4,4,2,2,2,2,2,2,3,3,1,1,4,4,1,1,3,3,2,2,2, %U A211272 2,2,2,5,5,1,1,2,2,2,2,4,4,1,1,4,4,1,1,3,3,3,3,2,2,1,1,5,5,2,2 %N A211272 Number of integer pairs (x,y) such that 0<x<=y<=n and x*y=floor(n/2). %C A211272 For a guide to related sequences, see A211266. %H A211272 Robert Israel, <a href="/A211272/b211272.txt">Table of n, a(n) for n = 1..10000</a> %F A211272 a(n) = ceiling(A000005(floor(n/2))/2). - _Robert Israel_, Feb 07 2020 %e A211272 a(24) counts these pairs: (1,12), (2,6), (3,4). %p A211272 [seq(ceil(numtheory:-tau(floor(n/2))/2),n=1..100)]; - _Robert Israel_, Feb 07 2020 %t A211272 a = 1; b = n; z1 = 120; %t A211272 t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1}, %t A211272 {y, x, b}]] %t A211272 c[n_, k_] := c[n, k] = Count[t[n], k] %t A211272 Table[c[n, n], {n, 1, z1}] (* A038548 *) %t A211272 Table[c[n, n + 1], {n, 1, z1}] (* A072670 *) %t A211272 Table[c[n, 2*n], {n, 1, z1}] (* A211270 *) %t A211272 Table[c[n, 3*n], {n, 1, z1}] (* A211271 *) %t A211272 Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211272 *) %t A211272 c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}] %t A211272 Print %t A211272 Table[c1[n, n], {n, 1, z1}] (* A094820 *) %t A211272 Table[c1[n, n + 1], {n, 1, z1}] (* A091627 *) %t A211272 Table[c1[n, 2*n], {n, 1, z1}] (* A211273 *) %t A211272 Table[c1[n, 3*n], {n, 1, z1}] (* A211274 *) %t A211272 Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *) %o A211272 (Magma) [0] cat [Ceiling(#Divisors( Floor(n/2))/2):n in [2..100]]; // _Marius A. Burtea_, Feb 07 2020 %Y A211272 Cf. A000005, A211266. %K A211272 nonn %O A211272 1,8 %A A211272 _Clark Kimberling_, Apr 07 2012