cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211272 Number of integer pairs (x,y) such that 0 and x*y=floor(n/2).

This page as a plain text file.
%I A211272 #14 Sep 08 2022 08:46:02
%S A211272 0,1,1,1,1,1,1,2,2,1,1,2,2,1,1,2,2,2,2,2,2,1,1,3,3,1,1,2,2,2,2,3,3,1,
%T A211272 1,3,3,1,1,3,3,2,2,2,2,1,1,4,4,2,2,2,2,2,2,3,3,1,1,4,4,1,1,3,3,2,2,2,
%U A211272 2,2,2,5,5,1,1,2,2,2,2,4,4,1,1,4,4,1,1,3,3,3,3,2,2,1,1,5,5,2,2
%N A211272 Number of integer pairs (x,y) such that 0<x<=y<=n and x*y=floor(n/2).
%C A211272 For a guide to related sequences, see A211266.
%H A211272 Robert Israel, <a href="/A211272/b211272.txt">Table of n, a(n) for n = 1..10000</a>
%F A211272 a(n) = ceiling(A000005(floor(n/2))/2). - _Robert Israel_, Feb 07 2020
%e A211272 a(24) counts these pairs: (1,12), (2,6), (3,4).
%p A211272 [seq(ceil(numtheory:-tau(floor(n/2))/2),n=1..100)]; - _Robert Israel_, Feb 07 2020
%t A211272 a = 1; b = n; z1 = 120;
%t A211272 t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
%t A211272 {y, x, b}]]
%t A211272 c[n_, k_] := c[n, k] = Count[t[n], k]
%t A211272 Table[c[n, n], {n, 1, z1}]           (* A038548 *)
%t A211272 Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
%t A211272 Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
%t A211272 Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
%t A211272 Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
%t A211272 c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
%t A211272 Print
%t A211272 Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
%t A211272 Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
%t A211272 Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
%t A211272 Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
%t A211272 Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)
%o A211272 (Magma) [0] cat [Ceiling(#Divisors( Floor(n/2))/2):n in [2..100]]; // _Marius A. Burtea_, Feb 07 2020
%Y A211272 Cf. A000005, A211266.
%K A211272 nonn
%O A211272 1,8
%A A211272 _Clark Kimberling_, Apr 07 2012