This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211273 #9 Jan 22 2025 20:06:07 %S A211273 1,3,5,7,10,13,15,19,22,25,28,32,35,39,43,46,49,55,57,62,66,69,73,78, %T A211273 82,86,90,95,98,104,106,112,117,120,125,131,133,138,143,148,152,158, %U A211273 161,166,172,176,179,186,189,196,200,204,209,215,219,225,229,233 %N A211273 Number of integer pairs (x,y) such that 0<x<=y<=n and x*y<=2n. %C A211273 For a guide to related sequences, see A211266. %e A211273 a(5) counts these pairs: (1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,3) %t A211273 a = 1; b = n; z1 = 120; %t A211273 t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1}, %t A211273 {y, x, b}]] %t A211273 c[n_, k_] := c[n, k] = Count[t[n], k] %t A211273 Table[c[n, n], {n, 1, z1}] (* A038548 *) %t A211273 Table[c[n, n + 1], {n, 1, z1}] (* A072670 *) %t A211273 Table[c[n, 2*n], {n, 1, z1}] (* A211270 *) %t A211273 Table[c[n, 3*n], {n, 1, z1}] (* A211271 *) %t A211273 Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211272 *) %t A211273 c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}] %t A211273 Print %t A211273 Table[c1[n, n], {n, 1, z1}] (* A094820 *) %t A211273 Table[c1[n, n + 1], {n, 1, z1}] (* A091627 *) %t A211273 Table[c1[n, 2*n], {n, 1, z1}] (* A211273 *) %t A211273 Table[c1[n, 3*n], {n, 1, z1}] (* A211274 *) %t A211273 Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *) %Y A211273 Cf. A211266. %K A211273 nonn %O A211273 1,2 %A A211273 _Clark Kimberling_, Apr 07 2012 %E A211273 a(1)-a(2) corrected by _Sean A. Irvine_, Jan 22 2025