This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211274 #9 Jan 22 2025 20:06:13 %S A211274 1,3,6,9,12,16,20,24,28,33,37,43,46,52,57,62,67,72,78,84,88,95,99,107, %T A211274 111,117,124,130,134,142,147,154,159,166,173,179,184,191,197,206,210, %U A211274 218,223,231,237,243,250,259,264,271,277,286,289,299,305,313 %N A211274 Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y <= 3n. %C A211274 For a guide to related sequences, see A211266. %e A211274 a(4) counts these pairs: (1,1), (1,2), (1,3), (1,4), (2,3), (2,4), (3,3,), (3,4), (4,4). %t A211274 a = 1; b = n; z1 = 120; %t A211274 t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1}, %t A211274 {y, x, b}]] %t A211274 c[n_, k_] := c[n, k] = Count[t[n], k] %t A211274 Table[c[n, n], {n, 1, z1}] (* A038548 *) %t A211274 Table[c[n, n + 1], {n, 1, z1}] (* A072670 *) %t A211274 Table[c[n, 2*n], {n, 1, z1}] (* A211270 *) %t A211274 Table[c[n, 3*n], {n, 1, z1}] (* A211271 *) %t A211274 Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211272 *) %t A211274 c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}] %t A211274 Print %t A211274 Table[c1[n, n], {n, 1, z1}] (* A094820 *) %t A211274 Table[c1[n, n + 1], {n, 1, z1}] (* A091627 *) %t A211274 Table[c1[n, 2*n], {n, 1, z1}] (* A211273 *) %t A211274 Table[c1[n, 3*n], {n, 1, z1}] (* A211274 *) %t A211274 Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *) %Y A211274 Cf. A211266. %K A211274 nonn %O A211274 1,2 %A A211274 _Clark Kimberling_, Apr 07 2012 %E A211274 a(1)-a(3) corrected by _Sean A. Irvine_, Jan 22 2025