This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211280 #24 Nov 07 2023 08:22:42 %S A211280 2,7,9,15,15,21,21,27,35,33,43,45,45,51,59,65,63,73,75,75,85,87,95, %T A211280 105,105,105,111,111,117,141,135,143,141,159,153,163,169,171,179,185, %U A211280 183,201,195,201,201,223,235,231,231,237,245,243,261,263,269,275,273,283,285,285,303,321,315,315,321,345,343,357,351,357,365,375,379 %N A211280 Numerator of prime(n+1) - prime(n)/2. %C A211280 Second row of the inverse semi-binomial transform of A000040(n+1) as introduced in A213268. %C A211280 The list of denominators is 1, 2, 2, ... (2 repeated), so a(n) = A210497(n) for n>1. %C A211280 a(n) - prime(n) = 2*prime(n+1)-prime(n)-prime(n) are prime differences (A001223) multiplied by 2, and therefore multiples of 4. %F A211280 a(n) ~ n log n. Apart from the first term, a(n) = 2*prime(n+1) - prime(n). - _Charles R Greathouse IV_, Jul 10 2012 %F A211280 a(n) = prime(n+2) - A036263(n), n>1. - _R. J. Mathar_, Jul 10 2012 %p A211280 A211280 := proc(n) %p A211280 ithprime(n+1)-ithprime(n)/2 ; %p A211280 numer(%) ; %p A211280 end proc: # _R. J. Mathar_, Jul 10 2012 %t A211280 Numerator[#[[2]]-#[[1]]/2]&/@Partition[Prime[Range[80]],2,1] (* _Harvey P. Dale_, Mar 05 2023 *) %Y A211280 Denominators are A040000. %K A211280 nonn,easy,frac %O A211280 1,1 %A A211280 _Paul Curtz_, Jul 05 2012