cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211312 Square array of Delannoy numbers D(i,j) mod 3 (i >= 0, j >= 0) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 0, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 2, 2, 0, 0, 2, 2, 2, 1, 1, 1, 1, 2, 2, 0, 2, 2, 1, 1, 1, 1, 0, 1, 2, 0, 2, 2, 0, 2, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2012

Keywords

Examples

			Written as a triangle:
1,
1, 1,
1, 0, 1,
1, 2, 2, 1,
1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1,
1, 2, 2, 0, 2, 2, 1,
1, 1, 1, 0, 0, 1, 1, 1,
1, 0, 1, 0, 0, 0, 1, 0, 1,
...
		

Crossrefs

Programs

  • Maple
    A211312 := proc(n,k): add(binomial(k, j) * binomial(n-j, k), j=0..n-k) mod 3 end: seq(seq(A211312(n,k), k=0..n), n=0..12); # Johannes W. Meijer, Jul 19 2013
  • Mathematica
    a[n_, k_] := Mod[Binomial[n, k]*Hypergeometric2F1[-k, k-n, -n, -1], 3]; Table[a[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 14 2014, after Johannes W. Meijer *)

Formula

a(n) = sum(binomial(k, j) * binomial(n-j, k), j=0..n-k) mod 3. - Johannes W. Meijer, Jul 19 2013