This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211339 #13 Apr 07 2017 03:14:42 %S A211339 0,1,1,1,2,2,2,3,3,4,4,4,5,5,5,5,6,7,7,8,8,8,8,8,9,10,10,10,11,11,11, %T A211339 12,12,13,13,13,14,14,14,15,16,16,16,16,17,17,17,17,17,19,19,20,21,21, %U A211339 21,21,21,22,22,22,23,23,23,23,25,25,25,26,26,26,26,27,28,29 %N A211339 Number of integer pairs (x,y) such that 1 < x <= y <= n and x^2 + y^2 <= n. %C A211339 Partial sums of A025426. %C A211339 For a guide to related sequences, see A211266. %F A211339 a(n) = -1/2(-1 + floor(sqrt(n/2)))(floor(sqrt(n/2))) + Sum_{k=1..floor(sqrt(n/2))} floor(sqrt(n - k^2)). - _Nicholas Stearns_, Apr 03 2017 %t A211339 a = 1; b = n; z1 = 120; %t A211339 t[n_] := t[n] = Flatten[Table[x^2 + y^2, {x, a, b - 1}, {y, x, b}]] %t A211339 c[n_, k_] := c[n, k] = Count[t[n], k] %t A211339 TableForm[Table[c[n, k], {n, 1, 10}, {k, 1, 2 n}]] %t A211339 Table[c[n, n], {n, 1, z1}] (* A025426 *) %t A211339 c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}] %t A211339 Table[c1[n, n], {n, 1, z1}] (* A211339 *) %Y A211339 Cf. A211266. %K A211339 nonn %O A211339 1,5 %A A211339 _Clark Kimberling_, Apr 08 2012