This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211340 #11 Jun 04 2019 13:05:28 %S A211340 0,1,3,5,9,13,17,23,30,38,45,53,64,74,86,97,110,123,138,154,168,186, %T A211340 203,220,241,261,282,302,324,348,370,396,421,448,476,501,531,558,591, %U A211340 622,651,684,717,753,788,821,858,894,933,973,1014,1054,1093,1135 %N A211340 Number of integer pairs (x,y) such that 1<x<=y<=n and x^2+y^2<=n^2. %C A211340 For a guide to related sequences, see A211266. %H A211340 Robert Israel, <a href="/A211340/b211340.txt">Table of n, a(n) for n = 1..2000</a> %p A211340 N:= 100: # for a(1)..a(N) %p A211340 V:= Vector(N): %p A211340 for y from 1 to N-1 do %p A211340 for x from 1 to y do %p A211340 r:= x^2 + y^2; %p A211340 if r > N^2 then break fi; %p A211340 t:= ceil(sqrt(r)); %p A211340 V[t]:= V[t]+1 %p A211340 od od: %p A211340 ListTools:-PartialSums(convert(V,list)); # _Robert Israel_, Jun 04 2019 %t A211340 a = 1; b = n; z1 = 120; %t A211340 t[n_] := t[n] = Flatten[Table[x^2 + y^2, {x, a, b - 1}, {y, x, b}]] (* 1<=x<=y<=n *) %t A211340 c[n_, k_] := c[n, k] = Count[t[n], k] %t A211340 TableForm[Table[c[n, k], {n, 1, 7}, {k, 1, n^2}]] %t A211340 Table[c[n, n^2], {n, 1, z1}] (* A046080 *) %t A211340 c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}] %t A211340 Table[c1[n, n^2], {n, 1, z1/2}] (* A211340 *) %Y A211340 Cf. A046080, A211266. %K A211340 nonn %O A211340 1,3 %A A211340 _Clark Kimberling_, Apr 08 2012