This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211344 #31 Feb 08 2025 13:57:41 %S A211344 1,3,5,15,51,85,255,3855,13107,21845,65535,16711935,252645135, %T A211344 858993459,1431655765,4294967295,281470681808895,71777214294589695, %U A211344 1085102592571150095,3689348814741910323,6148914691236517205 %N A211344 Atomic Boolean functions interpreted as binary numbers. %C A211344 Row n of the triangle shows the atoms among n-ary Boolean functions: %C A211344 1 01 %C A211344 3 5 0011 0101 %C A211344 15 51 85 00001111 00110011 01010101 %C A211344 Often n-ary x_k = T(n,k), e.g. for 2-ary functions x_1=0011, x_2=0101 and for 3-ary functions x_1=00001111, x_2=00110011, x_3=01010101. %C A211344 An easier generalized way is the enumeration from right to left, here shown with k starting from 0, so that n-ary x_k = T(n, n-k-1). As numbers in the diagonals on the right have the same bit pattern, this corresponds to the infinitary definition of x_k as a binary fraction 1/A000215(k) = 1/(2^2^k + 1): %C A211344 2-ary x_0=0101=5, 3-ary x_0=01010101=85, infinitary x_0 = 1/3 = .010101... %C A211344 2-ary x_1=0011=3, 3-ary x_1=00110011=51, infinitary x_1 = 1/5 = .001100110011... %H A211344 Tilman Piesk, <a href="/A211344/b211344.txt">Table of n, a(n) for n = 0..65</a> %H A211344 Tilman Piesk, <a href="http://commons.wikimedia.org/wiki/File:Atomic_Boolean_functions_in_Sierpinski_triangle.svg">Atomic Boolean functions in Sierpinski triangle</a> (Wikimedia Commons) %F A211344 a = A001317( A089633 ) %o A211344 (MATLAB) %o A211344 Seq = sym(zeros(55,1)) ; %o A211344 Filledlines = 0 ; %o A211344 for m=1:10 %o A211344 for n=1:m %o A211344 Sum = sym(0) ; %o A211344 for k=0:2^m-1 %o A211344 if mod( floor( k/2^(m-n) ) ,2) == 0 %o A211344 Sum = Sum + 2^sym(k) ; %o A211344 end %o A211344 end %o A211344 Seq( Filledlines + n ) = Sum ; %o A211344 end %o A211344 Filledlines = Filledlines + m ; %o A211344 end %o A211344 (Python) %o A211344 from itertools import count, islice %o A211344 def A211344_gen(): # generator of terms %o A211344 return (sum((bool(~(m:=(1<<t)-(1<<k)-1)&m-i)^1)<<i for i in range((1<<t)-(1<<k))) for t in count(1) for k in range(t-1, -1, -1)) %o A211344 A211344_list = list(islice(A211344_gen(),20)) # _Chai Wah Wu_, May 03 2023 %o A211344 (Python) %o A211344 def arity_and_atom_to_integer(arity, atom): %o A211344 result = 0 %o A211344 max_place = (1 << arity) - (1 << atom) - 1 %o A211344 for exponent in range(max_place + 1): %o A211344 if not bool(~max_place & max_place - exponent): %o A211344 place_value = 1 << exponent %o A211344 result += place_value %o A211344 return result %o A211344 def A211344(n, k): %o A211344 return arity_and_atom_to_integer(n, n-k-1) # _Tilman Piesk_, Jan 25 2025 %Y A211344 A001317, A089633, A051179 (left diagonal) %K A211344 nonn,tabl %O A211344 0,2 %A A211344 _Tilman Piesk_, Jul 24 2012