cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211349 Primes p such that p-1 divides 2^p + 2.

This page as a plain text file.
%I A211349 #45 Mar 08 2024 01:15:44
%S A211349 2,3,11,251,5051,16811,2025251,8751251,16607051,28257611,69005051,
%T A211349 78906251,176775251,210381251,372175451,550427051,707025251,854704451,
%U A211349 1866788051,2441406251,2605806251,4249701251,5469531251,9304386251,10315761251,10915095251
%N A211349 Primes p such that p-1 divides 2^p + 2.
%C A211349 Prime p>2 is in this sequence iff (p-1)/2 is in A015950. - _Max Alekseyev_, Dec 26 2017
%H A211349 Max Alekseyev, <a href="/A211349/b211349.txt">Table of n, a(n) for n = 1..177</a>
%t A211349 Select[Prime[Range[1000]], Mod[2^# + 2, # - 1] == 0 &]
%o A211349 (PARI)
%o A211349 N=10^9;
%o A211349 default(primelimit,N);
%o A211349 forprime(p=2,N, if (-2==Mod(2,p-1)^p, print1(p,", ")));
%o A211349 /* _Joerg Arndt_, Feb 06 2013 */
%o A211349 (Python)
%o A211349 from sympy import primerange
%o A211349 A211349_list = [p for p in primerange(1,10**6) if p == 2 or pow(2,p,p-1) == p-3] # _Chai Wah Wu_, Mar 25 2021
%Y A211349 Cf. A069051, A211203.
%K A211349 nonn
%O A211349 1,1
%A A211349 _Philip A. Hoskins_, Feb 06 2013
%E A211349 a(19)-a(47) from _Giovanni Resta_, Feb 10 2013
%E A211349 a(48)-a(177) from _Max Alekseyev_, Jan 06 2018