cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211363 Permutation corresponding to the inversion sets interpreted as binary numbers (A211362) ordered by value.

This page as a plain text file.
%I A211363 #29 Aug 29 2016 11:20:34
%S A211363 0,1,3,2,4,5,9,11,8,10,16,17,6,7,13,15,12,14,18,19,21,20,22,23,33,35,
%T A211363 41,39,45,47,32,34,40,38,44,46,64,65,70,71,30,31,37,36,42,43,61,63,67,
%U A211363 69,60,62,66,68,90,91,93,92,94,95,24,25,27
%N A211363 Permutation corresponding to the inversion sets interpreted as binary numbers (A211362) ordered by value.
%C A211363 A211362 lists the binary interpretations of inversion sets ordered by the reverse colexicographic order of permutations (A055089). This permutation orders them by value. Its inverse begins: 0, 1, 3, 2, 4, 5, 12, 13, 8, 6, 9, 7, 16, 14, 17, 15, 10, 11, 18, 19, 21, 20, 22, 23, ...
%H A211363 Tilman Piesk, <a href="/A211363/b211363.txt">Table of n, a(n) for n = 0..5039</a>
%H A211363 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>
%e A211363 These are the first 24 finite permutations. The inversion sets interpreted as binary numbers on the right form the sequence A211362, which is not monotonic:
%e A211363 No.  permutation   inversion set  A211362
%e A211363 00     1 2 3 4     0  0 0  0 0 0     0
%e A211363 01     2 1 3 4     1  0 0  0 0 0     1
%e A211363 02     1 3 2 4     0  0 1  0 0 0     4
%e A211363 03     3 1 2 4     1  1 0  0 0 0     3
%e A211363 04     2 3 1 4     0  1 1  0 0 0     6
%e A211363 05     3 2 1 4     1  1 1  0 0 0     7
%e A211363 06     1 2 4 3     0  0 0  0 0 1    32
%e A211363 07     2 1 4 3     1  0 0  0 0 1    33
%e A211363 08     1 4 2 3     0  0 1  0 1 0    20
%e A211363 09     4 1 2 3     1  1 0  1 0 0    11
%e A211363 10     2 4 1 3     0  1 1  0 1 0    22
%e A211363 11     4 2 1 3     1  1 1  1 0 0    15
%e A211363 12     1 3 4 2     0  0 0  0 1 1    48
%e A211363 13     3 1 4 2     1  0 0  1 0 1    41
%e A211363 14     1 4 3 2     0  0 1  0 1 1    52
%e A211363 15     4 1 3 2     1  1 0  1 0 1    43
%e A211363 16     3 4 1 2     0  1 1  1 1 0    30
%e A211363 17     4 3 1 2     1  1 1  1 1 0    31
%e A211363 18     2 3 4 1     0  0 0  1 1 1    56
%e A211363 19     3 2 4 1     1  0 0  1 1 1    57
%e A211363 20     2 4 3 1     0  0 1  1 1 1    60
%e A211363 21     4 2 3 1     1  1 0  1 1 1    59
%e A211363 22     3 4 2 1     0  1 1  1 1 1    62
%e A211363 23     4 3 2 1     1  1 1  1 1 1    63
%e A211363 This is the same list ordered by the inversion sets, so the right column is monotonic now. The left column is the beginning of the permutation p, i.e., this sequence:
%e A211363 No.  permutation   inversion set  A211362*p
%e A211363 00     1 2 3 4     0  0 0  0 0 0     0
%e A211363 01     2 1 3 4     1  0 0  0 0 0     1
%e A211363 03     3 1 2 4     1  1 0  0 0 0     3
%e A211363 02     1 3 2 4     0  0 1  0 0 0     4
%e A211363 04     2 3 1 4     0  1 1  0 0 0     6
%e A211363 05     3 2 1 4     1  1 1  0 0 0     7
%e A211363 09     4 1 2 3     1  1 0  1 0 0    11
%e A211363 11     4 2 1 3     1  1 1  1 0 0    15
%e A211363 08     1 4 2 3     0  0 1  0 1 0    20
%e A211363 10     2 4 1 3     0  1 1  0 1 0    22
%e A211363 16     3 4 1 2     0  1 1  1 1 0    30
%e A211363 17     4 3 1 2     1  1 1  1 1 0    31
%e A211363 06     1 2 4 3     0  0 0  0 0 1    32
%e A211363 07     2 1 4 3     1  0 0  0 0 1    33
%e A211363 13     3 1 4 2     1  0 0  1 0 1    41
%e A211363 15     4 1 3 2     1  1 0  1 0 1    43
%e A211363 12     1 3 4 2     0  0 0  0 1 1    48
%e A211363 14     1 4 3 2     0  0 1  0 1 1    52
%e A211363 18     2 3 4 1     0  0 0  1 1 1    56
%e A211363 19     3 2 4 1     1  0 0  1 1 1    57
%e A211363 21     4 2 3 1     1  1 0  1 1 1    59
%e A211363 20     2 4 3 1     0  0 1  1 1 1    60
%e A211363 22     3 4 2 1     0  1 1  1 1 1    62
%e A211363 23     4 3 2 1     1  1 1  1 1 1    63
%Y A211363 Cf. A211362.
%K A211363 nonn,base,look
%O A211363 0,3
%A A211363 _Tilman Piesk_, Jun 03 2012