cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211375 Semiprimes that have both prime digits (2,3,5,7) and nonprime digits (1,4,6,8,9), without digits "0".

This page as a plain text file.
%I A211375 #14 Mar 31 2022 12:34:46
%S A211375 15,21,26,34,38,39,51,58,62,65,74,82,85,87,93,95,115,121,122,123,129,
%T A211375 133,134,142,143,145,155,158,159,177,178,183,185,187,213,214,215,217,
%U A211375 218,219,221,226,247,249,254,259,262,265,267,274,278
%N A211375 Semiprimes that have both prime digits (2,3,5,7) and nonprime digits (1,4,6,8,9), without digits "0".
%C A211375 This is to semiprimes A001358 as A220488 is to primes A000040.
%H A211375 Harvey P. Dale, <a href="/A211375/b211375.txt">Table of n, a(n) for n = 1..1000</a>
%e A211375 a(1) = 15 because 15 = 3*5 is semiprime, "1" is a nonprime digit, and "5" is a prime digit.
%t A211375 SemiprimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; fQ[n_] := Module[{d = IntegerDigits[n]}, SemiprimeQ[n] && Intersection[d, {2, 3, 5, 7}] != {} && Intersection[d, {1, 4, 6, 8, 9}] != {} && ! MemberQ[d, 0]]; Select[Range[278], fQ] (* _T. D. Noe_, Feb 09 2013 *)
%t A211375 spQ[n_]:=PrimeOmega[n]==2&&FreeQ[IntegerDigits[n],0]&&Count[ IntegerDigits[ n],_?PrimeQ]>0&&Count[IntegerDigits[n],_?(!PrimeQ[#]&)]>0; Select[ Range[ 300],spQ] (* _Harvey P. Dale_, Mar 31 2022 *)
%Y A211375 Cf. A001358, A220488.
%K A211375 nonn,base,easy,less
%O A211375 1,1
%A A211375 _Jonathan Vos Post_, Feb 06 2013