cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211379 Number of pairs of parallel diagonals in a regular n-gon.

Original entry on oeis.org

0, 0, 0, 3, 7, 16, 27, 45, 66, 96, 130, 175, 225, 288, 357, 441, 532, 640, 756, 891, 1035, 1200, 1375, 1573, 1782, 2016, 2262, 2535, 2821, 3136, 3465, 3825, 4200, 4608, 5032, 5491, 5967, 6480, 7011, 7581, 8170, 8800, 9450, 10143, 10857, 11616, 12397, 13225
Offset: 3

Views

Author

Martin Renner, Feb 07 2013

Keywords

Examples

			a(6) = 3 since by numbering the vertices from 1 to 6 there are three pairs of parallel diagonals, i.e., {[1, 3], [4, 6]}, {[1, 5], [2, 4]}, {[2, 6], [3, 5]}.
a(7) = 7 since there are the seven pairs {[1, 3], [4, 7]}, {[1, 4], [5, 7]}, {[1, 5], [2, 4]}, {[1, 6], [2, 5]}, {[2, 6], [3, 5]}, {[2, 7], [3, 6]}, {[3, 7], [4, 6]}.
a(8) = 16 since there are the sixteen pairs {[1, 3], [4, 8]}, {[1, 3], [5, 7]}, {[1, 4], [5, 8]}, {[1, 5], [2, 4]}, {[1, 5], [6, 8]}, {[1, 6], [2, 5]}, {[1, 7], [2, 6]}, {[1, 7], [3, 5]}, {[2, 4], [6, 8]}, {[2, 6], [3, 5]}, {[2, 7], [3, 6]}, {[2, 8], [3, 7]}, {[2, 8], [4, 6]}, {[3, 7], [4, 6]}, {[3, 8], [4, 7]}, {[4, 8], [5, 7]}.
		

Crossrefs

Programs

  • Maple
    a:=n->piecewise(n mod 2 = 0,1/8*n*(n-4)^2,n mod 2 = 1, 1/8*n*(n-3)*(n-5),0);
  • Mathematica
    A211379[n_]:=n/8If[OddQ[n],(n-3)(n-5),(n-4)^2];Array[A211379,100,3] (* or *)
    LinearRecurrence[{2,1,-4,1,2,-1},{0,0,0,3,7,16},100] (* Paolo Xausa, Nov 21 2023 *)
  • Python
    def A211379(n): return n*(n*(n-8)+16-(n&1))>>3 # Chai Wah Wu, Nov 22 2023

Formula

a(n) = (1/2)*n*(binomial(n/2-1,2) + binomial(n/2-2,2)) = (1/8)*n*(n-4)^2 for n even;
a(n) = n*binomial((n-3)/2,2) = (1/8)*n*(n-3)*(n-5) for n odd.
G.f.: -x^6*(x^2-x-3) / ((x-1)^4*(x+1)^2). - Colin Barker, Feb 14 2013