This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211392 #25 Nov 22 2023 21:38:42 %S A211392 0,0,1,4,10,24,51,85,146,254,520,769,1557,2561,3997,5333,10705,14633, %T A211392 29315,40970,60722,95912,191902,242769,339909,532088,677224,917112, %U A211392 1834373,2332596,4665375,5529352,7864049,12164824,16422587,19595164,39190653,60465758 %N A211392 The number of divisors d of n! such that the symmetric group on n letters contains no elements of order d. %H A211392 Alois P. Heinz, <a href="/A211392/b211392.txt">Table of n, a(n) for n = 1..1000</a> %F A211392 a(n) = A000005(n!) - A009490(n). %p A211392 b:= proc(n,i) option remember; local p; %p A211392 p:= `if`(i<1, 1, ithprime(i)); %p A211392 `if`(n=0 or i<1, 1, b(n, i-1)+ %p A211392 add(b(n-p^j, i-1), j=1..ilog[p](n))) %p A211392 end: %p A211392 a:= n-> numtheory[tau](n!) -b(n, numtheory[pi](n)): %p A211392 seq(a(n), n=1..100); # _Alois P. Heinz_, Feb 15 2013 %t A211392 b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n==0 || i<1, 1, b[n, i-1] + Sum[b[n-p^j, i-1], {j, 1, Floor@Log[p, n]}]]]; %t A211392 a[n_] := DivisorSigma[0, n!] - b[n, PrimePi[n]]; %t A211392 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Mar 24 2017, after _Alois P. Heinz_ *) %Y A211392 Cf. A000005, A009490, A027423, A211391. %K A211392 nonn %O A211392 1,4 %A A211392 _Alexander Gruber_, Feb 07 2013 %E A211392 More terms from _Alois P. Heinz_, Feb 11 2013