cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211400 Rectangular array, read by upward diagonals: T(n,m) is the number of Young tableaux that can be realized as the ranks of the outer sums a_i + b_j where a = (a_1, ... a_n) and b = (b_1, ... b_m) are real monotone vectors in general position (all sums different).

This page as a plain text file.
%I A211400 #41 Jun 14 2023 16:47:53
%S A211400 1,1,1,1,2,1,1,5,5,1,1,14,36,14,1,1,42,295,295,42,1,1,132,2583,6660,
%T A211400 2583,132,1,1,429,23580
%N A211400 Rectangular array, read by upward diagonals: T(n,m) is the number of Young tableaux that can be realized as the ranks of the outer sums a_i + b_j where a = (a_1, ... a_n) and b = (b_1, ... b_m) are real monotone vectors in general position (all sums different).
%C A211400 Alternatively, that can be realized as the ranks of the outer products a_i b_j where a = (a_1, ... a_n) and b = (b_1, ... b_m) are real positive monotone vectors.
%C A211400 The entries at T(2,n) and T(m,2) are Catalan numbers (A000108).
%C A211400 The original version of this sequence was
%C A211400 1  1  1  1  1   1   1 ...
%C A211400 1  2  5 14 42 132 428 ...
%C A211400 1  5 24 77 ...
%C A211400 1 14 77 ...
%C A211400 1 42 ...
%C A211400 ...
%C A211400 but some of the later entries seem to be incorrect. - _Robert J. Vanderbei_, Jan 09 2015
%H A211400 Federico Castillo and Jean-Philippe Labbé, <a href="https://arxiv.org/abs/2306.00082">Lineup polytopes of product of simplices</a>, arXiv:2306.00082 [math.CO], 2023.
%H A211400 C. Mallows, R. J. Vanderbei, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Vanderbei/vand3.html">Which Young Tableaux Can Represent an Outer Sum?</a>, J. Int. Seq. 18 (2015) #15.9.1.
%H A211400 Robert J. Vanderbei, <a href="/A211400/a211400.txt">Solutions for the 3 X 3 case</a>
%H A211400 Robert J. Vanderbei, <a href="/A211400/a211400_1.txt">Solutions for the 3 X 4 case</a>
%H A211400 Robert J. Vanderbei, <a href="/A211400/a211400_2.txt">Solutions for the 4 X 4 case</a>
%e A211400 The vectors a = (0,2) and b = (0,4,5) give the outer sums
%e A211400 0  4  5  which have ranks  1  3  4
%e A211400 2  6  7                    2  5  6
%e A211400 which is one of the five 2 X 3 Young tableaux.
%e A211400 One of the 18 3 X 3 tableaux that cannot be realized as a set of outer sums
%e A211400 is  1  2  6
%e A211400     3  5  7
%e A211400     4  8  9.
%e A211400 The array begins
%e A211400 1      1      1      1      1      1      1      1      1 ...
%e A211400 1      2      5     14     42    132    429   1430   4862 ... (A000108)
%e A211400 1      5     36    295   2583  23580 221680    ... (A255489)
%e A211400 1     14    295   6660    ...
%e A211400 1     42   2583    ...
%e A211400 1    132  23580    ...
%e A211400 1    429 221680    ...
%e A211400 1   1430   ...
%e A211400 1   4862   ...
%e A211400 ...
%Y A211400 Cf. A060854, A000108, A255489.
%K A211400 nonn,hard,more,tabl
%O A211400 1,5
%A A211400 _Colin Mallows_, Feb 08 2013
%E A211400 Corrected and extended by _Robert J. Vanderbei_, Jan 09 2015