This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211402 #14 Feb 22 2013 14:40:36 %S A211402 1,0,1,0,2,3,0,4,18,15,0,8,84,180,105,0,16,360,1500,2100,945,0,32, %T A211402 1488,10800,27300,28350,10395,0,64,6048,72240,294000,529200,436590, %U A211402 135135,0,128,24384,463680,2857680,7938000,11060280,7567560,2027025 %N A211402 Triangle T(n,k), 0<=k<=n, given by (0,2,0,4,0,6,0,8,0,10,0,...) DELTA (1, 2, 3, 4, 5, 6, 7, 8, 9,...) where DELTA is the operator defined in A084938. %C A211402 A Galton triangle. Essentially the same as A187075. %F A211402 T(n,k) = 2*k*T(n-1,k) + (2*k-1)*T(n-1,k-1), T(0,0) = 1, T(n,k) = 0 if k<0 or if k>n. %F A211402 T(n,k) = 2^(n-k)*A001147(k)*A048993(n,k). %F A211402 G.f.: F(x,t) = 1 + x*t + (2*x+3*x^2)*t^2/2! + (4*x+18*x^2+15*x^3)*t^3/3!+ ... = Sum_{n = 0..inf}R(n,x)*t^n/n!. %F A211402 The row polynomials R(n,x) satisfy the recursion R(n+1,x) = 2*(x+x^2)*R'(n,x) + x*R(n,x) where ' indicates differentiation with respect to x. %e A211402 Triangle begins : %e A211402 1 %e A211402 0, 1 %e A211402 0, 2, 3 %e A211402 0, 4, 18, 15 %e A211402 0, 8, 84, 180, 105 %e A211402 0, 16, 360, 1500, 2100, 945 %e A211402 0, 32, 1488, 10800, 27300, 28350, 10395 %Y A211402 Cf. A000079, A001147, A048993. %K A211402 easy,nonn,tabl %O A211402 0,5 %A A211402 _Philippe Deléham_, Feb 09 2013