This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211417 #62 Aug 29 2023 11:51:43 %S A211417 1,77636318760,53837289804317953893960, %T A211417 43880754270176401422739454033276880, %U A211417 38113558705192522309151157825210540422513019720,34255316578084325260482016910137568877961925210286281393760 %N A211417 Integral factorial ratio sequence: a(n) = (30*n)!*n!/((15*n)!*(10*n)!*(6*n)!). %C A211417 The integrality of this sequence can be used to prove Chebyshev's estimate C(1)*x/log(x) <= #{primes <= x} <= C(2)*x/log(x), for x sufficiently large; the constant C(1) = 0.921292... and C(2) = 1.105550.... Chebyshev's approach used the related step function floor(x) -floor(x/2) -floor(x/3) -floor(x/5) +floor(x/30). See A182067. %C A211417 This sequence is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin. %C A211417 The o.g.f. sum {n >= 0} a(n)*z^n is a generalized hypergeometric series of type 8F7 (see Bober, Table 2, Entry 31) and is an algebraic function of degree 483840 over the field of rational functions Q(z) (see Rodriguez-Villegas). Bober remarks that the monodromy group of the differential equation satisfied by the o.g.f. is W(E_8), the Weyl group of the E_8 root system. %C A211417 See the Bala link for the proof that a(n), n = 0,1,2..., is an integer. %C A211417 Congruences: a(p^k) == a(p^(k-1)) ( mod p^(3*k) ) for any prime p >= 5 and any positive integer k (write a(n) as C(30*n,15*n)*C(15*n,5*n)/C(6*n,n) and use equation 39 in Mestrovic, p. 12). More generally, the congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) may hold for any prime p >= 5 and any positive integers n and k. Cf. A295431. - _Peter Bala_, Jan 24 2020 %H A211417 N. J. A. Sloane, <a href="/A211417/b211417.txt">Table of n, a(n) for n = 0..50</a> %H A211417 Peter Bala, <a href="/A211417/a211417_1.txt">Proof of the integrality of A211417 and A211418</a> %H A211417 Frits Beukers, <a href="http://www.ams.org/notices/201401/rnoti-p48.pdf">Hypergeometric functions, how special are they?</a>, Notices Amer. Math. Soc. 61 (2014), no. 1, 48--56. MR3137256 %H A211417 J. W. Bober, <a href="http://arxiv.org/abs/0709.1977">Factorial ratios, hypergeometric series, and a family of step functions</a>, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., 79, Issue 2, (2009), 422-444. %H A211417 Florian Fürnsinn and Sergey Yurkevich, <a href="https://arxiv.org/abs/2308.12855">Algebraicity of hypergeometric functions with arbitrary parameters</a>, arXiv:2308.12855 [math.CA], 2023. %H A211417 R. Mestrovic, <a href="http://arxiv.org/abs/1111.3057">Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011)</a>, arXiv:1111.3057 [math.NT], 2011. %H A211417 Fernando Rodriguez Villegas, <a href="http://arxiv.org/abs/math/0701362">Integral ratios of factorials and algebraic hypergeometric functions</a>, arXiv:math.NT/0701362, 2007. %H A211417 Fernando Rodriguez Villegas, <a href="https://arxiv.org/abs/1907.02722">Mixed Hodge numbers and factorial ratios</a>, arXiv:1907.02722 [math.NT], 2019. %H A211417 K. Soundararajan, <a href="https://arxiv.org/abs/1901.05133">Integral Factorial Ratios</a>, arXiv:1901.05133 [math.NT], 2019. %H A211417 Wadim Zudilin, <a href="http://mathoverflow.net/questions/26336/">Integer-valued factorial ratios</a>, MathOverflow question 26336, 2010. %F A211417 a(n) ~ 2^(14*n-1) * 3^(9*n-1/2) * 5^(5*n-1/2) / sqrt(Pi*n). - _Vaclav Kotesovec_, Aug 30 2016 %t A211417 Table[(30 n)!*n!/((15 n)!*(10 n)!*(6 n)!), {n, 0, 5}] (* _Michael De Vlieger_, Oct 02 2015 *) %o A211417 (PARI) a(n) = (30*n)!*n!/((15*n)!*(10*n)!*(6*n)!); %o A211417 vector(10, n, a(n-1)) \\ _Altug Alkan_, Oct 02 2015 %o A211417 (Magma) [Factorial(30*n)*Factorial(n)/(Factorial(15*n)*Factorial(10*n)*Factorial(6*n)): n in [0..10]]; // _Vincenzo Librandi_, Oct 03 2015 %Y A211417 Cf. A182067, A211418, A061162, A061163, A061164, A091496, A091527, A112292, A182400, A211419, A211420, A211421, A276100, A262733, A295431. %K A211417 nonn,easy %O A211417 0,2 %A A211417 _Peter Bala_, Apr 11 2012