A211431 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^3+(x+y)^2=0.
1, 7, 13, 19, 27, 37, 47, 57, 67, 77, 87, 97, 107, 117, 131, 145, 159, 173, 187, 201, 215, 229, 243, 257, 271, 285, 299, 313, 327, 341, 355, 369, 385, 403, 421, 439, 457, 475, 493, 511, 529, 547, 565, 583, 601, 619, 637, 655, 673, 691, 709, 727, 745
Offset: 0
Keywords
Crossrefs
Cf. A211422.
Programs
-
Mathematica
t[n_] := t[n] = Flatten[Table[w^3 + (x + y)^2, {w, -n, n}, {x, -n, n}, {y, -n, n}]] c[n_] := Count[t[n], 0] t = Table[c[n], {n, 0, 80}] (* A211431 *) (t - 1)/2 (* integers *)
Comments