This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211535 #13 Jun 23 2021 08:30:07 %S A211535 0,0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,4,5,6,6,7,8,9,10,11,12,13,14,16,17, %T A211535 18,19,21,23,24,25,27,29,31,32,34,36,38,40,42,44,46,48,51,53,55,57,60, %U A211535 63,65,67,70,73,76,78,81,84,87,90,93,96,99,102,106,109 %N A211535 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w=4x+5y. %C A211535 For a guide to related sequences, see A211422. %H A211535 Colin Barker, <a href="/A211535/b211535.txt">Table of n, a(n) for n = 0..1000</a> %H A211535 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,0,-1,0,0,-1,1). %F A211535 a(n) = a(n-1) + a(n-4) - a(n-6) - a(n-9) + a(n-10). %F A211535 G.f.: x^9 / ((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x + x^2 + x^3 + x^4)). - _Colin Barker_, Dec 03 2017 %F A211535 a(n)-a(n-1)=A165190(n-9). - _R. J. Mathar_, Jun 23 2021 %t A211535 t[n_] := t[n] = Flatten[Table[-w + 4 x + 5 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]] %t A211535 c[n_] := Count[t[n], 0] %t A211535 t = Table[c[n], {n, 0, 70}] (* A211535 *) %t A211535 FindLinearRecurrence[t] %t A211535 LinearRecurrence[{1,0,0,1,0,-1,0,0,-1,1},{0,0,0,0,0,0,0,0,0,1},71] (* _Ray Chandler_, Aug 02 2015 *) %o A211535 (PARI) concat(vector(9), Vec(x^9 / ((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x + x^2 + x^3 + x^4)) + O(x^100))) \\ _Colin Barker_, Dec 03 2017 %Y A211535 Cf. A211422, A205772. %K A211535 nonn,easy %O A211535 0,14 %A A211535 _Clark Kimberling_, Apr 15 2012