cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211536 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w=4x-5y.

This page as a plain text file.
%I A211536 #13 Dec 03 2017 10:27:46
%S A211536 0,0,0,2,3,4,6,8,11,14,17,21,24,29,34,39,44,49,56,63,69,76,83,92,100,
%T A211536 108,117,126,136,146,156,167,177,189,201,213,225,237,251,265,278,292,
%U A211536 306,322,337,352,368,384,401,418,435,453,470,489,508,527,546
%N A211536 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w=4x-5y.
%C A211536 For a guide to related sequences, see A211422.
%H A211536 Colin Barker, <a href="/A211536/b211536.txt">Table of n, a(n) for n = 0..1000</a>
%H A211536 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,0,-1,0,0,-1,1).
%F A211536 a(n) = a(n-1) + a(n-4) - a(n-6) - a(n-9) + a(n-10).
%F A211536 G.f.: x^3*(2 + x + x^2 + 2*x^3 + x^6) / ((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x + x^2 + x^3 + x^4)). - _Colin Barker_, Dec 03 2017
%t A211536 t[n_] := t[n] = Flatten[Table[w - 4 x + 5 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
%t A211536 c[n_] := Count[t[n], 0]
%t A211536 t = Table[c[n], {n, 0, 70}]  (* A211536 *)
%t A211536 FindLinearRecurrence[t]
%t A211536 LinearRecurrence[{1,0,0,1,0,-1,0,0,-1,1},{0,0,0,2,3,4,6,8,11,14},57] (* _Ray Chandler_, Aug 02 2015 *)
%o A211536 (PARI) concat(vector(3), Vec(x^3*(2 + x + x^2 + 2*x^3 + x^6) / ((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x + x^2 + x^3 + x^4)) + O(x^40))) \\ _Colin Barker_, Dec 03 2017
%Y A211536 Cf. A211422.
%K A211536 nonn,easy
%O A211536 0,4
%A A211536 _Clark Kimberling_, Apr 15 2012