This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211537 #26 Oct 15 2019 23:27:25 %S A211537 4,15,35,39,51,95,115,87,155,111,123,215,235,159,371,183,302,335,219, %T A211537 471,395,415,267,623,291,303,482,327,339,791,554,1255,635,655,411,695, %U A211537 662,447,698,471,734,815,835,519,1211,543,842,1895,579,591,914,2167,1263 %N A211537 Smallest number k such that the sum of prime factors of k (counted with multiplicity) equals n times a nontrivial integer power. %C A211537 Smallest k such that sopfr(k) = n * m^q where m, q >= 2. %C A211537 a(n) = A211144(n) except for n = 55, 63, 73, ... Example: a(55) = 1964 = 2^2*491 but A211144(55) = 2631 = 3*877. %H A211537 Amiram Eldar, <a href="/A211537/b211537.txt">Table of n, a(n) for n = 1..10000</a> %e A211537 a(55) = 1964 = 2^2*491, since the sum of the prime divisors counted with multiplicity is 491+4 = 495 = 55*3^2. %p A211537 sopfr:= proc(n) option remember; %p A211537 add(i[1]*i[2], i=ifactors(n)[2]) %p A211537 end: %p A211537 a:= proc(n) local k, q; %p A211537 for k while irem(sopfr(k), n, 'q')>0 or %p A211537 igcd (map(i->i[2], ifactors(q)[2])[])<2 do od; k %p A211537 end: %p A211537 seq (a(n), n=1..100); %Y A211537 Cf. A001414, A211144. %K A211537 nonn %O A211537 1,1 %A A211537 _Michel Lagneau_, Jun 27 2012