cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211543 Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w=3x+5y.

This page as a plain text file.
%I A211543 #12 Dec 03 2017 10:12:15
%S A211543 0,0,0,0,1,1,1,2,3,4,5,6,7,9,11,12,14,16,18,21,23,25,28,31,34,37,40,
%T A211543 43,47,51,54,58,62,66,71,75,79,84,89,94,99,104,109,115,121,126,132,
%U A211543 138,144,151,157,163,170,177,184,191,198,205,213,221,228,236,244
%N A211543 Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w=3x+5y.
%C A211543 For a guide to related sequences, see A211422.
%H A211543 Colin Barker, <a href="/A211543/b211543.txt">Table of n, a(n) for n = 0..1000</a>
%H A211543 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1,1,-1,0,-1,1).
%F A211543 a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-5) - a(n-6) - a(n-8) + a(n-9).
%F A211543 G.f.: x^4*(1 + x^4) / ((1 - x)^3*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)). - _Colin Barker_, Dec 03 2017
%t A211543 t[n_] := t[n] = Flatten[Table[-2 w + 3 x + 5 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
%t A211543 c[n_] := Count[t[n], 0]
%t A211543 t = Table[c[n], {n, 0, 70}]   (* A211543 *)
%t A211543 FindLinearRecurrence[t]
%t A211543 LinearRecurrence[{1,0,1,-1,1,-1,0,-1,1},{0,0,0,0,1,1,1,2,3},63] (* _Ray Chandler_, Aug 02 2015 *)
%o A211543 (PARI) concat(vector(4), Vec(x^4*(1 + x^4) / ((1 - x)^3*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)) + O(x^40))) \\ _Colin Barker_, Dec 03 2017
%Y A211543 Cf. A211422.
%K A211543 nonn,easy
%O A211543 0,8
%A A211543 _Clark Kimberling_, Apr 15 2012