This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211545 #21 Dec 04 2017 09:20:48 %S A211545 0,4,29,99,238,470,819,1309,1964,2808,3865,5159,6714,8554,10703,13185, %T A211545 16024,19244,22869,26923,31430,36414,41899,47909,54468,61600,69329, %U A211545 77679,86674,96338,106695,117769,129584,142164,155533,169715,184734,200614,217379 %N A211545 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and w+x+y>0. %C A211545 For a guide to related sequences, see A211422. %H A211545 Colin Barker, <a href="/A211545/b211545.txt">Table of n, a(n) for n = 0..1000</a> %H A211545 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A211545 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). %F A211545 From _Colin Barker_, Dec 04 2017: (Start) %F A211545 G.f.: x*(4 + 13*x + 7*x^2) / (1 - x)^4. %F A211545 a(n) = (n*(3 - 3*n + 8*n^2))/2. %F A211545 (End) %e A211545 a(1) counts these triples: (-1,1,1), (1,-1,1), (1,1,-1), (1,1,1). %t A211545 t = Compile[{{u, _Integer}}, %t A211545 Module[{s = 0}, (Do[If[w + x + y > 0, s = s + 1], %t A211545 {w, #}, {x, #}, {y, #}] &[ %t A211545 Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]]; %t A211545 Map[t[#] &, Range[0, 60]] (* A211545 *) %t A211545 FindLinearRecurrence[%] %t A211545 (* _Peter J. C. Moses_, Apr 13 2012 *) %t A211545 LinearRecurrence[{4,-6,4,-1},{0,4,29,99},36] (* _Ray Chandler_, Aug 02 2015 *) %o A211545 (PARI) concat(0, Vec(x*(4 + 13*x + 7*x^2) / (1 - x)^4 + O(x^40))) \\ _Colin Barker_, Dec 04 2017 %Y A211545 Cf. A211422. %K A211545 nonn,easy %O A211545 0,2 %A A211545 _Clark Kimberling_, Apr 16 2012