A211558 Number of nonnegative integer arrays of length n+4 with new values 0 upwards introduced in order, and containing the value 4.
1, 16, 162, 1345, 10096, 72028, 503295, 3513522, 24846186, 179710415, 1338211110, 10301168792, 82149009153, 679213429092, 5821288827862, 51678344988737, 474686563694500, 4505982729646896, 44149073821979791, 445947141166581374, 4638543419725492302, 49631058873617505287
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..1....1....1....0....1....1....1....1....1....1....1....1....1....1....0....1 ..2....1....1....1....0....2....2....1....2....1....2....1....2....2....1....1 ..0....2....2....2....2....3....3....2....3....2....3....2....0....3....2....1 ..3....0....3....1....2....0....0....3....1....0....2....2....3....2....1....2 ..0....3....3....3....3....4....4....4....4....2....4....1....3....3....3....3 ..1....4....3....4....4....2....1....1....0....3....1....3....0....0....0....2 ..0....1....0....1....4....4....3....1....2....4....5....0....4....4....4....0 ..4....0....4....1....5....4....5....2....0....5....4....4....5....5....0....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 5 of A211561.
Formula
Empirical: a(n) = Sum_{j=5..n+4} Stirling2(n+4,j).