cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211606 Total number of inversions over all involutions of length n.

This page as a plain text file.
%I A211606 #47 Aug 30 2020 13:00:32
%S A211606 0,0,1,5,26,110,490,2086,9240,40776,185820,855580,4048616,19455800,
%T A211606 95773496,479581480,2454041920,12776826816,67849286160,366455145936,
%U A211606 2015621873440,11268605368160,64074235576736,370040657037920,2171138049287296,12928631894588800,78139702237771200
%N A211606 Total number of inversions over all involutions of length n.
%D A211606 R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 339.
%H A211606 Alois P. Heinz, <a href="/A211606/b211606.txt">Table of n, a(n) for n = 0..800</a>
%F A211606 From _Alois P. Heinz_, Feb 12 2013: (Start)
%F A211606 a(n) = a(n-1) + (n-1)*a(n-2) + A000085(n-2)*(n-1)^2 for n>1; a(0) = a(1) = 0.
%F A211606 a(n) = (n*(n-2)*(9*n-7) *a(n-1) +n*(n-1)*(9*n^2-13*n+2) *a(n-2))/ ((n-2)*(9*n^2-31*n+24)) for n>=3; a(n) = n*(n-1)/2 for n<3.
%F A211606 E.g.f.: (x^2/2 + x^3/3 + x^4/4) * exp(x + x^2/2).
%F A211606 (End)
%F A211606 a(n) ~ sqrt(2)/8 * n^(n/2+2)*exp(sqrt(n)-n/2-1/4) * (1-3/(8*sqrt(n))). - _Vaclav Kotesovec_, Aug 15 2013
%e A211606 a(3) = 5 because in the involutions of {1,2,3}: (given in word form) 213, 321, 132, 123, there are respectively 1 + 3 + 1 + 0 = 5 inversions.
%p A211606 a:= proc(n) option remember; `if`(n<3, n*(n-1)/2,
%p A211606       n*((n-2)*(9*n-7) *a(n-1) +(n-1)*(9*n^2-13*n+2) *a(n-2))/
%p A211606       ((n-2)*(9*n^2-31*n+24)))
%p A211606     end:
%p A211606 seq(a(n), n=0..30);  # _Alois P. Heinz_, Feb 12 2013
%t A211606 (* first do *) Needs["Combinatorica`"] // Quiet (* then *)
%t A211606 Table[Total[Map[Inversions, Involutions[n]]], {n, 0, 10}]
%t A211606 a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (x^2/2 + x^3/3 + x^4/4) Exp[x + x^2/2], {x, 0, n}]]; (* _Michael Somos_, Jun 03 2019 *)
%o A211606 (PARI) {a(n) = if( n<0, 0, n! * polcoeff( (x^2/2 + x^3/3 + x^4/4) * exp(x + x^2/2 + x * O(x^n)), n))}; /* _Michael Somos_, Jun 03 2019 */
%Y A211606 Cf. A000085, A001809, A161124, A216239, A337193.
%K A211606 nonn
%O A211606 0,4
%A A211606 _Geoffrey Critzer_, Feb 10 2013
%E A211606 a(13)-a(15) from _Alois P. Heinz_, Feb 10 2013
%E A211606 Further terms from _Alois P. Heinz_, Feb 12 2013